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INTRODUCTION

The principal goal of this conference was to promote use of activity-based approaches for travel
forecasting. Corollary purposes were to identify activity-based forecasting techniques that can be
used now and to recommend actions to advance the state-of-the-art. The conference was
organized as one plenary session and three workshops.

This report includes papers that document the keynote address and five other presentations in the
plenary session. Konstadinos Goulias’ keynote address laid out the issues regarding activity
based travel forecasting that were to be addressed at the conference. Martin Lee-Gosselin then
presented a synthesis of experience with activity based forecasting. Richard Beckman described
the approaches to activity based analysis used in the TRANSIMS model. Eric Pas summarized
recent research and advances in activity based analyses. Keith Lawton described applications of
activity and time-use data for transportation planning in Portland, Oregon. Ryuichi Kitamura
described other applications of activity information for forecasting travel behavior. Eric Miller
reported on applications of microsimulation for activity based forecasting. A paper based on the
introductory seminar presented at the conference is also included here.

Following those papers are summaries of the discussions and recommendations in the three
workshops:

® Data Resources and Survey Methods for Activity Analysis

4 Chaired by Martin Lee-Gosselin and John Polak

4+ With discussions by Kay Axhausen, Ken Cervenka and Christopher Fleet
® Models of Activity and Travel Behavior

4 Chaired by Eric Pas and Ram Pendyala

4 With discussions by Charles Purvis and Thomas Golob
® Microsimulation in Activity Analysis

4 Chaired by Robert Sicko and Hani Mahmassani

4 With discussions by Konstadinos Goulias and Richard Beckman

The workshops began by considering techniques that are currently available for activity based
travel forecasting. Gaps in the availability and workability of those techniques were identified,
and research and development were recommended to overcome those deficiencies.

The first workshop examined the kinds of data needed for activity forecasting and the resources
and procedures for obtaining that data. The content and structure of activity and time-use diaries
were discussed. There have been at least six major regional activity diary surveys in the United
States: Portland, Dallas, Honolulu, Boston, Washington, DC, and Triangle Transit Authority
(North Carolina). The progression of those surveys represents significant developments in
activity diary survey techniques. Much can be learned in the near term by examining the data
from those surveys and from the successes and failures of the travel behavior analyses and
forecasts using that data. Needs identified include improving panel methods, event based data
collection, stated response methods and including transportation service supply data.




The second workshop considered models of activity engagement and their relationship to travel
behavior models. Three discrete choice models have been implemented: a Dutch national model,
a Stockholm model and work by Cambridge Systematics, Inc., in Boise, Idaho. The latter has
also been applied in a statewide model for New Hampshire. Some additional work in Portland is
in progress. The discussions dealt with data requirements for those models and how to interface
with currently conventional models. The strengths and weaknesses of various approaches were
identified and remedial actions were recommended.

The third workshop examined the potential for microsimulation in activity analysis and
forecasting. This technique holds opportunity for forecasting person and household
characteristics and possibly inputs to travel forecasting models as well. The discussion also
addressed the special needs of microsimulation procedures. Those techniques are currently being
developed for use in the new TRANSIMS models. Two microsimulation approaches that have
been applied are the AMOS work in Washington, DC, and the Midas model for microsimulation
of demographic change in the Netherlands. Also, an extension of AMOS, adding in-vehicle
transactions is being applied in California but was not yet complete at the time of the conference.

Most comments indicated that the conference was useful because it brought together researchers
and practitioners to introduce and discuss the need and potential for new procedures. The
practitioners were exposed to some new developments that may improve their practice in the
future. However there was disappointment that the state-of-the-art had not yet reached the point
of providing tested techniques that the practitioners could use now. The researchers were
apprised of the needs of practitioners as guidance for their development efforts.
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ABSTRACT

An examination of the theory underlying activity based travel forecasting models, and the
classification of the differences among modeling approaches provide a framework which is used
to compare six important examples.

Three examples are utility-based econometric systems of equations predicting probabilities of
decision outcomes. One is trip-based, a second is tour-based, and the third represents an entire
daily schedule. The first two are theoretically inferior but have been validated operationally.
The daily schedule system integrates the sequence and timing of activities across tours but has
been implemented only as a prototype.

Hybrid simulations use sequential decision rules to predict decision process outcomes. Each
example assumes the decisionmaker uses a specific method to simplify a complex decision. The
first classifies the alternatives into a small choice set of distinct classes, the second uses a
structured search for a satisfactory schedule adjustment, and the third employs a sequential
schedule building process. They have challenging data requirements, unvalidated search process
assumptions and only partially functional prototypes.

KEYWORDS
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choice

'This paper is the transcript of a tutorial on activity based travel forecasting taught at a conference of the same name
in New Orleans, Louisiana, on June 2, 1996. The conference was part of the Travel Model Improvement Program
sponsored by the US Department of Transportation and the Environmental Protection Agency.




INTRODUCTION
We present some fundamentals of activity based travel forecasting. If you want to

become more familiar with the language of activity based modeling,

understand the concepts underlying the approach,

compare the alternative approaches,

or understand important examples, including how well they satisfy the most essential
system requirements,

then this presentation is aimed at you.

We’ll first look at the motivation for activity based forecasting. Then we’ll examine the concepts
underlying the methods. We’ll identify the basic characteristics of the various modeling
approaches, considering the requirements the systems must satisty, the characteristics they have
in common and the fundamental differences between them. Finally, we’ll spend a considerable
amount of time looking at important examples. We’ve identified two classes of model systems,
which are econometric model systems and hybrid simulation systems. We’ll look at three
examples in each class, considering how they work, and their particular strengths and
weaknesses.

MOTIVATION

Stated simply, the motivation for activity based travel forecasting is that travel decisions are
activity based.

Concerns about aggregate phenomena such as congestion, emissions and land use patterns lead
governments to consider policies aimed at controlling them. These include, for example,
employer-based commute programs, single occupant vehicle regulation, road pricing, multimodal
facilities and transit oriented land development. But these policies don’t affect the aggregate
phenomena directly. Instead, thy affect them indirectly through the behavior of individuals.
Furthermore, individuals adjust their behavior in complex ways, motivated by a desire to achieve
their activity objectives. This idea is illustrated by an example in Figure 1. This figure
represents the daily activity and travel pattern of one person who drove alone to work at 7:30
a.m., returned home at 4:40 p.m., and stopped to shop on the way home. In response to an
employer sponsored program which gave strong financial incentives to commute by transit, this
person made the switch to transit. This required them to begin their commute earlier, at 7:00
a.m., in order to arrive at work on time. Because their preferred shopping destination wasn’t on
the transit path, they decided to come straight home after work, then drive alone to do their
shopping after arriving at home in the evening. This response was rooted in demand for activity,
and involved a complex adjustment in their entire day’s pattern. In this case, a conventional trip
based forecasting model would probably fail to predict the compensating peak period auto trip
induced by the transit incentive program. Forecasting models will only be able to accurately
capture this kind of response if they represent how people schedule their daily activities.




Figure 1
Activity based policy responses involve complex behavioral
adjustments motivated by a desire to achieve activity objectives.
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A few statistics drawn from a survey of Boston area residents in 1991 reveal some of the
complexity and variety in people’s activity and travel schedules. Looking first at the number of
tours in the daily activity pattern, Figure 2 shows that a substantial percentage of people stay
home for the entire day, and 40% take 2 or more tours away from home during the day. The
patterns vary dramatically across the population. For example, adults in households with small
children are much more likely to take 2 or more tours. Among these, the patterns of males and
females differ substantially. Males are less likely to stay home all day and females are more
likely to take 3 or more tours.




Figure 2
Number of tours in the daily activity pattern (Boston, 1991)
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In Table 1 we see that mode choice differs between primary and secondary tours in the day.
Drive alone and transit alternatives drop in market share for secondary tours, with substantial
increases in shared ride and walk alternatives.

Table 1
Modes of travel on primary and secondary totirs

Mode Primary Tours  Secondary Tours
Drive alone 56% 41%
Shared ride 15 30
Walk 13 26
Transit with walk access 10 2
Transit with auto access 4
Bicycle 1 1
Total 100 100

Looking at the complexity of the work commute tour in Figure 3, we see that 25% of the workers
conduct activities away from the workplace sometime in the middle of the workday, and another
39% make stops for other activities on the way to or from work. Here again, the patterns vary
within the population. In households with small children, males are more likely than females to
travel directly to and from work.




Figure 3
Complexity of the work commute tour
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The distribution of trips by time of day, shown in Figure 4, reveals the bimodal distribution of
trips associated with the morning and evening peak periods. Dividing these trips into four
categories, it also shows a unimodal distribution for nonworker trips, with substantial amounts of
travel occurring during the peak periods. A substantial amount of chained and separate nonwork
trips are made by workers, with a heavy skew toward the afternoon and evening hours.




Figure 4
Trips in progress by time of day
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The previous statistics reveal the variety of patterns in which travel occurs. But a substantial
amount of activities are completed without travel, and many trade-offs are made all the time
between travel-based and non-travel alternatives. Many people work at home in ways and
amounts that alter their travel patterns. They also make catalog purchases of all types, even for
their regular grocery shopping, and use the telephone or computer network to conduct banking or
other financial transactions. The point here is that activity based models are needed to capture
the trade-offs people make between activity alternatives which involve travel and those which
don’t.

THE THEORY BEHIND ACTIVITY BASED TRAVEL FORECASTING

Our discussion of the theory underlying activity based travel forecasting starts with the
framework in which activity and travel decisions are made. This is followed by an examination
of the characteristics of activity and travel demand. Finally we examine theories about the way
people make choices, with a focus on methods for dealing with complex decisions.

Activity and Travel Decision Framework
Figure 5 shows how activity and travel scheduling decisions are made in the context of a broader

framework, surrounded by and connected in important ways to other decisions (Ben-Akiva and
Lerman 1985; Ben-Akiva, Bowman and Gopinath 1996).




Figure 5
Activity and travel decision framework
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Urban development decisions of governments, real estate developers and other firms influence
the opportunities available to households and individuals. Government bodies may provide
public transportation services, and tax and regulate the behavior of individuals and firms. Real
estate developers provide the locational opportunities for firm and individual location decisions.
Firms determine the locations of job opportunities through their location and production
decisions.

Household and individual choices, including (1) mobility and lifestyle decisions, (2) activity and
travel scheduling, and (3) implementation and rescheduling, fall into distinct time frames of
decisionmaking. Mobility and lifestyle decisions occur at irregular and infrequent intervals, in a
time frame of years. These include major decisions of household composition and roles,
workforce participation, workplace, residential location and long term activity commitments.
They also include a set of long term transport decisions such as auto ownership, work travel
mode, transit and parking arrangements, commute program participation, and, potentially, the
acquisition of equipment for automated traveler information systems.

Activity and travel scheduling is a planning function which occurs at more frequent and regular
intervals. It involves the selection of a particular set of activities and their priorities, the
assignment of the activities to particular members of the household, the sequencing of the
activities, and the selection of activity locations, times and methods of required travel. Itis
convenient to make the simplifying assumption that the activity and travel scheduling decision
addresses a particular time span, such as a week or a day. The models we examine later do this,
using a 24 hour day as the decision time span.




Within the day, unplanned implementation and rescheduling decisions occur. These include en-
route decisions of route choice, travel speed, acceleration, lane changing, merging, following
distance, and parking location. Scheduling decisions are made to fill previously unscheduled
time with unplanned activities, and rescheduling occurs in response to unexpected events.

Urban development directly influences the decisions of individuals and households, and together
the urban development and individual decisions affect the performance of the transportation
system. This is manifested in several ways, including travel volumes, speeds, congestion and
environmental impact. These manifestations of transportation system performance

© simultaneously affect the urban development and individual decisions.

The Characteristics of Activity and Travel Demand

One of the most fundamental, well known and widely accepted principles is that travel demand is
derived from activity demand. This principle is why the decision framework includes travel
decisions as components of a broader activity scheduling decision, and it requires us to model the
demand for activities. Chapin (1974) theorized that activity demand is motivated by basic
human desires, such as the desires for survival, social encounters and ego gratification. It is also
moderated by various factors, including, for example, commitments, capabilities and health.
Unfortunately, it is difficult to model the factors underlying activity demand, and little progress
has been made to incorporate them in travel demand models. However, a significant amount of
research has been done on how household membership moderates activity demand. The
conclusions are that (1) households influence activity decisions, (2) the effects differ by
household type, size, member relationships, ages and genders, and (3) children, in particular,
impose significant demands and constraints on others in the household.

Hagerstrand (1970) focused attention on constraints which limit activity options available to
individuals. These include coupling constraints, authority constraints and capability constraints.
Coupling constraints require the presence of another person or some other resource in order to
participate in the activity opportunity. Examples include participation in joint household
activities or in an activity which requires an automobile for access. Authority constraints are
institutionally imposed restrictions, such as office or store hours, and regulations such as noise
restrictions. Capability constraints are imposed by nature or technology limits. One very
important example is the nearly universal human limitation which requires us to return home
daily to a home base for rest and personal maintenance. Another example Hagerstrand called the
time-space prism; we live in a time-space continuum and can only function in different locations
at different points in time by experiencing the time and cost of movement between the locations.

However, not all activity requires our physical movement. Furthermore, the advance of
telecommunications technology makes it possible to participate in more and more kinds of
activities without physically moving, by increasing the quantity and quality of one- and two-way
information exchange which can occur electronically. This leads to choices for individuals
between travel and non-travel activity alternatives for work, shopping, conferring and recreation.
The modeling implications of this are very important. First, models need to represent the time
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and space constraints people face. Second, models also need to represent the choices people
make between travel and non-travel alternatives.

The Choice Process and Complex Decisions

The decision framework, and the factors influencing activity and travel demand give a good
picture of the peculiar nature of activity and travel decisions. General theories of how people
make choices when faced with complex decisions are also important in the development and
critique of alternative modeling approaches.

Every choice has three important elements, including (1) a set of alternatives, (2) a
“decisionmaker, and (3) a decision protocol, or set of rules. The set of all feasible alternatives is
often referred to as the universal set, whereas the set of alternatives which the decisionmaker
actually considers is called the choice set. The alternatives in the choice set are defined to be
mutually exclusive and collectively exhaustive, so that the decisionmaker must choose one and
only one alternative from the choice set.

The Alternatives. As we have already seen, the activity and travel scheduling decision is very
complex because it involves many dimensions, including activity participation and purpose,
priorities, sequence, timing, location, travel mode and route. Within each dimension the number
of alternatives can be very large, and sometimes infinite. Viewing the decision as a household
decision: further complicates the set of alternatives. Thus, in choosing an activity and travel
schedule, a decisionmaker faces a very large and complex set of alternatives.

The Decisionmaker. Furthermore, the decisionmaker possesses limited resources and capabilities
for making this complex decision. Information processing limitations prevent us from being
aware of all available alternatives, fully understanding the alternatives we are aware of, and
distinguishing similar alternatives. Gathering the information takes time, energy and, often
money which are all in limited supply. The result is that decisionmakers act on incomplete
information, especially when the choice involves a large, complex alternative set.

The Decision Protocol. A variety of decision protocols may be employed to make decisions, but
all of them can be described in terms of a two-stage process of (1) choice set generation, in which
the choice set is selected from the universal set, and (2) choice, in which one alternative is chosen
from the choice set. The process can be deliberative or reactive (Rich and Knight 1991; as cited
in Ettema, Borgers and Timmermans 1995). In a deliberative process all the alternatives are
identified before any are evaluated, and the two stages are conducted sequentially. In a reactive
process the evaluation of some alternatives can lead to the identification of additional
alternatives, and the two stages are partially completed in an iterative fashion until the choice is
finally made.
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Figure 6
Decision protocols can be viewed as a two stage process of choice set generation,
characterized by a particular search style and rigor, followed by choice, characterized
by a particular decision rule. The two stages can be conducted sequentially in
a deliberative process, or iteratively in a reactive process.
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Choice set generation, which can be thought of as a search for alternatives, is characterized by its
style and rigor. The search style can either be random, in which no systematic method is
employed for finding alternatives, or structured. The structure of a search can be generic or
context specific. For example, a search could be structured by an attempt to find alternatives
which are similar to the most recently found alternative. A generic structured search might
define “similar” generically, whereas in a context specific structured search the definition of
“similar” may depend on the nature of the most recently found alternative. An exhaustive search
is one which finds all the alternatives before finalizing the choice. A non-exhaustive search stops
before all the alternatives have been identified, with one result being that the choice is likely to
be suboptimal.

In the choice stage of the decision protocol, the alternatives are judged on one or more criteria,
such as travel cost and travel time, and the choice is made by employing a decision rule which is
based on the criteria. The choice stage is characterized by its decision rule. Decision rules which
employ one or more unranked criteria include inferiority, dominance and satisfaction. An
inferiority rule eliminates alternatives which are inferior to another alternative in every criterion.
A dominance rule selects alternatives which are superior to every other alternative in every
criterion. A satisfaction rule sets a minimum standard for every criterion and selects alternatives
which satisfy every minimum standard.
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None of the rules which employs multiple unranked criteria is assured of uniquely choosing one
and only one alternative. In contrast, rules which employ ranked criteria can arrive at a clearly
defined choice. A lexicographic rule applies the dominance rule to the most important criterion.
If two or more alternatives dominate all other alternatives, but are equal in the most important
criterion, the tie is broken by comparing them on successively less important criteria until only
one dominant alternative remains. Elimination by aspects (Tversky 1972) applies the satisfaction
rule to the most important criterion, eliminating all alternatives which fail to satisfy. The
remaining alternatives are judged on successively less important criteria, eliminating those which
don’t satisfy at each step, until only one alternative remains.

Finally, the decision rule may involve the use of a composite criterion. Here multiple criteria are
transformed into a single scalar criterion by means of a linear or nonlinear combination. The
alternative is chosen which best satisfies the composite criterion.

In models of decisions one of the most commonly assumed decision protocols is a deliberative
process in which an exhaustive search is followed by a utility maximization choice. The utility
function serves as a composite criterion. The use of this decision protocol in models of activity
and travel choices is frequently criticized because the large alternative set makes it unrealistic to
assume an exhaustive search followed by the rational evaluation of a utility function for every
alternative. Several alternative decision protocols have been hypothesized to better represent
how individuals cope with complex alternative sets. These include (1)non-exhaustive search, (2)
selection based on habit, (3) adaptive decisions, which adjust prior decisions in response to
changing conditions, (4) satisfaction rules which stop the search when a satisfying alternative is
found, and (5) bounded rational decisions (Simon 1957), in which a non-exhaustive search
generates a manageable choice set, to which a utility-based decision rule is applied.

Summary

We close this section on the theory underlying activity based travel forecasting with a list of the
important points:

® Activity and travel scheduling decisions are made in the context of a broader framework
which includes urban development decisions of governments, developers and firms, the
long range mobility and lifestyle decisions and within day implementation and
rescheduling decisions of individuals, and the performance of the transportation system.
® Important characteristics of activity and travel demand include:
4 travel demand is derived from activity demand,
4 household membership influences individual decisions, and
4 choices are constrained
» by atime-space continuum
» and by capability, coupling and authority constraints.
® Choice theory suggests that
4 decisions can be viewed as a two stage process of choice set generation and choice,
and
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4 individuals use coping mechanisms in order to make decisions with limited resources
when the alternative set is as large and complex as that of the activity and travel
scheduling decision.

MODELING APPROACHES

Our examination of theory in the previous section provides the ideas and the concepts for
examining the activity based modeling approaches. In this section we build a framework which
can be used to understand, compare and evaluate specific modeling approaches which have been
attempted. We start by asserting that the heart of the modeling problem is combinatorial, and
then present a list of requirements which can be used to judge how well any modeling effort
solves the problem. We proceed to characterize the modeling approaches which have been
attempted, first in terms of features shared by all the approaches, and then by a classification of
the ways in which they differ from each other. In the final sections of this presentation we will
use this framework to examine six important examples of attempts to incorporate activity based
methods into travel forecasting models.

The Fundamental Modeling Problem

The fundamental problem facing the activity based travel modeler is combinatorial. The
challenge is to adequately represent a decision process which has infinitely many feasible
outcomes in many dimensions. To show the size of the combinatorial problem, Table 2 lists the
dimensions of the activity and travel scheduling decision and provides an estimate of the number
of alternatives faced by an individual. Some of the dimensions are continuous, notably timing
and location. But if we simplify by transforming these into discrete categories, we get in the
neighborhood of 10'7 alternatives available to the individual.

Table 2
An estimate of the number of daily activity
schedule alternatives facing an individual

Number of activities perday 10 10
Sequence 10!
Timing 10 per activity 100
Location 1000 per activity 10,000
Mode 5 per activity 50 =
Route 10 per activity 100
Total 10"

Like the decisionmaker, the modeler must simplify. But unlike the decisionmaker, who can
simplify any way he or she pleases, the modeler must simplify in a way which matches the
behavior of the decisionmaker. We need a set of requirements with which we can measure how
well a model system solves this combinatorial problem.

14



Model System Requirements

Figure 7 lists the requirements which we expect an activity based travel forecasting model
system to satisfy. First, it should be theoretically sound, both behaviorally and mathematically.
Without these we can not rely on the results. Second, the scope must be complete enough to
make the model useful. If important dimensions of the activity scheduling decision are missing,
the model prediction will be incomplete and of limited use. Enough resolution of the daily
schedule alternatives is required to capture behavior which affects the aggregate phenomena in
which we’re interested. For example, the resolution of the time dimension must be fine enough
to capture time-of-day shifts in response to congestion pricing, and their effects on traffic
congestion. The scope of the model must enable it to deal with the relevant policy issues. Third,
the resource requirements of the model must allow it to be implemented. In addition to the data
we need for estimating the model parameters, we need to validate the model using a different set
of data. To use the model for prediction we must also be able to generate reliable forecasts of the
exogenous variables used by the model. The model must also be simple enough so that the logic
and computation required make it technically and financially feasible to develop, maintain and
operate. Finally, the model must produce valid results.

Figure 7
System requirements for an activity based
travel forecasting model system

® theoretically sound
® behaviorally
® mathematically
® complete scope
® daily schedule
® dimensionality
® resolution
® flexible policy scope
® practical (resource requirements)
® data
® estimation
® validation
® operation
® Jogic (software)
® computation (hardware)
® valid results

Commonalities Among the Various Modeling Approaches

Let us now consider the characteristics which are common to most of the activity based modeling
approaches. First, they all fit into the activity and travel decision framework which we presented
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in Figure 5, with a focus on the activity and travel decisions. Second, they all represent the
decision process as a two-stage decision protocol of choice set generation, or search, followed
sequentially or iteratively by the choice itself, as shown in Figure 6.

Third, all the models are disaggregate, representing the behavior of a single decisionmaker. They
are intended to generate predictions with disaggregate data, which requires the generation of a
representative population. The model is applied to each decisionmaker in the population,
yielding for each person either a simulated daily travel itinerary or a set of probabilities for the
alternatives in the choice set. The trips in the itinerary can then be aggregated and assigned to
the transport network, resulting in a prediction of transport system performance. This process
may need to be repeated to achieve statistically reliable predictions.

Although the models require the generation of a disaggregate population, they do not require this
to be done a certain way. Various well understood techniques exist for generating a disaggregate
population, using data from sources such as the census, household surveys, counts and
exogenous forecasts. Examples of these techniques include iterative proportional fitting, of
which the Fratar method is a special case, and models of household evolution which may employ
transition matrices and choice models.

In summary, the similarities of the various modeling approaches consist of the decision
framework, the two-stage choice process and the use of disaggregate methods.

Differences Among the Various Modeling Approaches

Despite the similarities, each of the proposed activity based model systems is unique in many
ways. We have classified the basic differences along 4 dimensions. As indicated in the
introduction, the major classification distinguishes econometric models from hybrid simulation
models. We can also classify each model system as representing either household decisions or
individual decisions, by its operation as a synthetic model or a switching model, and by whether
it predicts probabilities or simulates outcomes.

Econometric vs Hybrid Simulation Models. Econometric and hybrid simulation models use
different decision protocols. As shown in Figure 8, econometric models represent the choice set
generation, or search, stage very simply, either assuming the decisionmaker considers all feasible
alternatives, or using a simple search rule (heuristic) which results in a large choice set. Most of
the model is devoted to the complex representation of a utility-based multi-dimensional choice.
No iteration occurs between search and choice. Hybrid simulations, on the other hand, focus
most of their attention on the choice set generation stage, employing a complex search heuristic
which yields a very small choice set. A very simple utility or satisfaction based model is used to
represent the choice from this set. Often the protocol involves iteration between search and
choice.
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Figure 8
Econometric and hybrid simulation decision protocols. Econometric models
represent the search simply, and focus attention on the choice. Hybrid
simulations focus on the search, representing the choice simply.
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Another distinction is that econometric models are systems of equations which predict the
probability of decision outcomes. In the case of discrete outcomes, there is one equation per
possible outcome. In contrast, hybrid simulations are systems of sequential decision rules which
predict decision process outcomes.

Household vs Individual Decision. The difference between household and individual decision
models is straightforward. In an individual model one decision yields one person’s schedule of
activities and travel. In a household model one decision yields many schedules, one for each
person in the household.

Synthetic vs Switching Models. A synthetic model constructs a person’s activity and travel
schedule from scratch. A switching model, on the other hand, starts with a given schedule and
adjusts it in response to a change in conditions.

Probability vs Realization. This difference is based on how the disaggregate outcomes are
predicted. When the model is applied to an individual decisionmaker a probability model
calculates probabilities of each potential outcome, whereas a realization model predicts the
decision. An econometric model is naturally a probability model because it predicts the
probabilities of all potential outcomes, but it can also be implemented as a realization model via
Monte Carlo simulation, in which one of the potential outcomes is selected in a random draw
using the predicted probabilities. Hybrid simulation models, in contrast, can only be
implemented as realization models.
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ECONOMETRIC MODEL SYSTEMS

We have established a framework in which activity based travel forecasting systems can be
understood and compared, by examining the theory of activity based travel, stating the
requirements which the forecasting systems should satisfy, identifying the important
commonalities among approaches, and classifying the ways in which the systems differ. In the
next two sections we look at examples from the two major classes, starting in this section with
the econometric model systems.

As we explained already, econometric model systems are systems of equations representing
probabilities of decision outcomes. They are based on the theory of probability and statistics,
generate probabilities for all alternative outcomes, and are usually based on a utility
maximization assumption. Typically, these model systems rely heavily on multinomial logit and
nested logit probability models.

Econometric model systems achieve the needed simplification by subdividing decision outcomes
and aggregating the alternatives. For example, in the examples which we review, one system
subdivides outcomes by modeling decisions about trips instead of the entire daily schedule. All
the examples aggregate activity locations into geographic zones.

Developers of econometric model systems attempt to retain behavioral realism by integrating the
component models of the system. One method of integration models some dimensions of the
scheduling decision conditional upon the outcomes of other dimensions. For example, the choice
of travel mode for the work commute is conditioned by the choice of workplace. The second
major method of integration accompanies this conditionality, and involves the use of measures of
expected utility. . It is used when the utility of a conditional choice influences the utility of a
conditioning choice. In the previous example, the choice of workplace is influenced by the
expected utility of travel arising from all the available commute modes.

Within the class of econometric model systems we have identified three subclasses, based on
how they divide the decision outcomes. The simplest and oldest subclass divides the daily
schedule into trips. Some more recent models combine trips explicitly in tours. The last
subclass combines the tours in a daily schedule. In Figure 9 we compare the three subclasses by
seeing how they represent a hypothetical daily schedule. In this schedule the person departed for
work at 7:30 A.M., traveling by transit. At noon they walked out for personal business, returning
to work at 12:50 P.M. At 4:40 P. M. they returned home from work, again by transit. That
evening at 7:00 P.M. they drove to another location for shopping, returning home at 10:00 P.M.
The trip-based model represents the schedule as 6 one-way trips. The “direction” of the trips is
in terms of trip production and attraction rather than direction of movement. Time is not
modeled explicitly. In the tour-based model the trips are explicitly connected in tours,
introducing spatial constraints and direction of movement. Finally, the daily schedule model
explicitly links the tours and explicitly models the time dimension, although at a coarse
resolution. We will look at an example of each of these econometric approaches.
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Figure 9
The three subclasses of econometric model systems are characterized by
how they subdivide the daily schedule outcome. Trip-based models
subdivide the schedule into one-way trips. Tour-based models separate
the schedule into tours. Daily schedule models explicitly link the tours.
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Trip-Based System

The first example of an integrated trip-based econometric model system was developed during
the mid 1970's for the MTC in San Francisco (Ruiter and Ben-Akiva 1978). The demand model
portion of the MTC system has three major components, as shown in Figure 10(a). The mobility
and lifestyle component represents long term decisions related to auto ownership and home-
based work trips. Short term activity and travel decisions deal with other home based trips and
non-home based trips. Each model component is conditioned by choices at the higher level, and
the activity and travel models influence the mobility and lifestyle models via measures of
expected utility. Figure 10(b) shows details of the mobility and lifestyle component of the model
system. At this level we can see that the system is in the class of household models because it
explicitly models work travel decisions for two workers in the household. Arrows in the figure
show how the models are integrated, with solid arrows indicating conditionality and dashed
arrows indicating expected utility. For example, the number of autos chosen in the auto
ownership model is conditioned by the choice of workplace. That is, the model assumes the
workplace is known when it models the auto ownership decision. The auto ownership decision
itself conditions the mode choice model. The model also accounts for how auto ownership is
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influenced by the ease of travel for shopping and work by including variables of expected utility
generated by the shopping destination and mode choice and work mode choice models.

Figure 10
(a) Three major components of the MTC model system, and (b) details of the
mobility and lifestyle component, showing integration of the models via
conditionality (solid arrows) and expected utility (dashed arrows).
(Source: Ruiter and Ben-Akiva 1978)
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In summary, key features of the trip-based model systems, exemplified by the MTC system, are
their composition of disaggregate choice models and their integration via conditionality and
measures of expected utility according to the decision framework. Their key weakness is the
sequential modeling of home-based and non-home based trips rather than the explicit
representation of tours. The consequence is that the models may not correctly predict scheduling
changes which can occur in response to changing conditions.

Tour-Based System

Tour-based systems were first developed in the late 1970's and 80's in the Netherlands (Gunn,
van der Hoorn and Daly 1987; Daly, van Zwam and van der Valk 1983; Hague Consulting
Group 1992), and are being used extensively there and elsewhere in Europe, with the most recent
systems being developed in Stockholm, Sweden (Algers et. al. 1995) and Salerno, Italy
(Cascetta, Nuzzolo and Velardi 1993). Figure 11, which depicts the basic structure of the
Stockholm model system, shows how the tours for various purposes are explicitly modeled.
Work tour decisions are conditioned by the mobility and lifestyle decisions, and condition all
other activity and travel decisions. The model system makes heavy use of expected utility
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measures, strengthening the connections across dimensions of the activity and travel scheduling
decision.

Figure 11
The Stockholm tour-based model system
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The work tour decision, Figure 12, is modeled as a nested logit model. It includes the
household’s decision of who will work today, how the household’s autos will be allocated among
the workers, and the mode of travel for workers who do not use a household auto.

Figure 12
The nested logit work tour model
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The model of household shopping tours, Figure 13, conditioned by the work decision, determines
how many shopping activities the household will undertake, who will do them, the type of tour

on which they will be done, and the mode and destination of the tour. A shopping activity can be
assigned to one or more household members, and if it is assigned to a worker, the options exist of
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conducting the activity on a home-based tour, a work-based tour or chained to the work tour en
route between work and home.

Figure 13
The shopping tours model (a) assigns each shopping activity to one or
more household members (b). If a shopping activity is assigned to a worker,
the tour type model determines whether the activity occurs on a home-based
tour, a work-based tour, or chained in the work tour (c).
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Summarizing the tour-based econometric approach, the key feature is the explicit representation
of tours, and trip chaining within tours. The Stockholm example also explicitly models
household decisions. The key weaknesses of the tour-based systems are that they lack an
overarching pattern connecting the day’s tours, and they don’t integrate the time dimension into
the model structure.

Tour-based systems, exemplified by the Stockholm model system, represent the most advanced
state of the practice of activity based travel forecasting. These systems have been carefully
validated and are being widely applied in Europe. In contrast, the remaining four examples
which we will review next, including the daily schedule econometric system and all the hybrid
simulations, exist only as prototypes or partially implemented systems.

Daily Schedule System

The daily schedule system (Ben-Akiva ez. al. 1996; Ben-Akiva and Bowman 1995; Bowman
1995) deals directly with the two weaknesses of the tour-based models. First, it explicitly
represents the choice of a daily activity pattern, which overarches and ties together tour decisions
(Figure 14). Second, it incorporates the time of day decision. The daily activity pattern is
characterized as a multidimensional choice of primary activity, primary tour type, and the
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number and purpose of secondary tours. The model distinguishes between the primary tour of
the day and secondary tours. For each tour, it models destinations, times of day and modes.

Figure 14
(a) The daily schedule system consists of a daily activity pattern
which overarches and ties together the tour decisions. (b) The daily activity
pattern and (c) the tour decisions are multidimensional choices.
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The model is implemented as a nested logit system, with tour decisions conditioned by the
choice of daily activity pattern (Figure 15). They also influence the choice of daily activity
pattern through the expected utility mechanism described earlier for the trip and tour-based
systems. In the prototype, the daily activity pattern model is a choice among 55 patterns
including (1) whether to stay home all day or participate in activities involving travel, and (2)
conditional on travel, the choice of a particular pattern. The Boston travel survey, used for the
prototype, did not include records of at-home activities. If such data were available, it could be
incorporated at this level of the model. The model system design calls for the explicit modeling
of secondary destinations on tours, conditional on the choices for the primary destination.
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Figure 15
Daily schedule system prototype
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The key feature of this system, the integrated daily schedule, is also the source of one of its two
main weaknesses. Tying tours together in the daily activity pattern results in a very large choice
set which is behaviorally unrealistic and computationally burdensome. Constraints, utilities and
probabilities must be computed for literally billions of alternatives. Ironically, the prototype
nevertheless suffers from an incomplete representation of the daily schedule; the time of day is
aggregated into only 4 time periods, secondary stops on tours are omitted, the time of day
linkages are incomplete and household linkages are not explicitly modeled.

HYBRID SIMULATIONS

We have already described hybrid simulations as sequential decision rules predicting decision
process outcomes, and noted their focus of attention on choice set generation. These systems are
based on various decision theories, such as cognitive limitation or the notion of a search which
terminates with acceptance of a satisfying alternative. A simple utility based decision rule is
often used in the choice stage of the decision protocol. Hybrid simulations achieve
simplification by subdividing the decision process into separate sequential steps. Additionally,
all hybrid simulations developed to date achieve simplification by limiting the decision scope,
omitting important dimensions of the activity and travel scheduling decision.

A great variety of hybrid simulations is possible, and they are harder to subclassify than the
econometric systems. We review three particular model systems which, although they do not
characterize the entire class of hybrid simulations, are important examples and demonstrate some
of its variety. The STARCHILD system (Recker, McNally and Root 1986b; 1986a) is the
earliest example of this class, which models the activity and travel scheduling decision as a
classification and choice process. AMOS (RDC Inc. 1995) is a very recent example which has
been partially implemented in the Washington, D.C. area, representing the decision as a
satisficing adjustment. SMASH (Ettema, Borgers and Timmermans 1993; Ettema et. al. 1995)
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was developed in the Netherlands, and represents the scheduling decision as a sequence of
schedule building decisions.

STARCHILD: Classification and Choice

STARCHILD (Figure 16) starts with a detailed activity program which must be supplied from
outside the model. The activity program identifies many details of the schedule, including
activity purpose, participation, duration and location, as well as constraints on sequence, timing
and coupling of activities. It then models the scheduling decision as a four step process which
yields the timing and sequence of the activities in the program. Choice set generation occurs in
the first two steps. Feasible alternatives are exhaustively enumerated with careful attention to
constraints. They are then classified, using a statistical similarity measure, and one alternative is
chosen to represent each of approximately 3-10 classes. The remaining two steps comprise the
choice process. A decision rule is used to eliminate some alternatives. In the prototype which
was developed, all inferior alternatives were eliminated, according to an intuitive objective
criterion. A multinomial logit model then represents a utility maximizing choice among the
remaining non-inferior alternatives. The developers of STARCHILD conceived the activity
schedule as a plan, which is followed by implementation and rescheduling, but did not develop
the latter model.

Figure 16
STARCHILD takes an externally supplied activity program
and simulates the scheduling decision. Choice set generation
involves enumerating, classifying and sampling the schedule alternatives.
This is followed by a simple utility maximization choice.
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STARCHILD’s key features are its detailed representation of constraints in the identification of
feasible alternatives, and the use of a classification method to generate the choice set. Asa
model intended for use in forecasting travel, it has two key weaknesses. First, it relies on
external sources to predict important dimensions of the activity and travel schedule, including
activity participation, purpose, location and travel mode. Second, the classification and sampling
rule may inadequately represent the true choice set. The rule generates a very small choice set
with only one alternative of each distinctively different class, whereas people may frequently
choose from a small choice set of similar competing alternatives.

AMOS: Satisficing Adjustment

AMOS: (Figure 17) requires as input an even more detailed activity schedule than STARCHILD.
This, however, is because AMOS is designed as a switching model. Given a baseline schedule
and a policy change, it chooses a basic response, such as a mode change, which limits the domain
of search for a feasible adjustment. A structured search rule then completes the choice set
generation stage, yielding one feasible adjustment. A simple choice model accepts or rejects the
adjustment. If the adjustment is rejected then the structured search is repeated until an acceptable
adjustment has been found. If no acceptable alternative is found for the desired basic response,
then the process can loop back to the choice of another basic response.

Figure 17
AMOS takes a detailed schedule and searches for an acceptable adjustment
to a specific policy change. The process involves the selection of a basic policy
response which narrows the domain of search. This is followed by the search
for one feasible adjustment and the decision to accept the adjustment or continue the search.
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The basic response model is policy specific. Six policies are included in the prototype for
Washington, DC:

Workplace parking surcharge

Improved bicycle and pedestrian facilities

Combination of 1 and 2

Workplace parking surcharge with employer-supplied commuter voucher
Peak period driver charge

Combination of 4 and 5

A e

The basic response is modeled as a multinomial choice from a set of eight alternatives:

No change

Change departure time to work
Switch to transit

Switch to car/vanpool

Switch to bicycle

Switch to walk

Work at home

Other

PRI B W=

The prototype implements the multinomial choice model via the combination of a neural network
and a multinomial logit model (MNL). The neural network predicts an output signal for each
alternative, which is a scalar function of 36 decisionmaker characteristics under the policy
change. The MNL converts the output signals to probabilities by using the output signal as the
only explanatory variable in the utility function. The parameters of the basic response model are
estimated from data supplied by a policy specific stated preference survey.

Given a basic response, a context specific search rule is used to find a feasible schedule
adjustment. Figure 18 shows a portion of the prototype’s search rule for a basic response of
mode change from single occupant vehicle to transit. The rule checks first for the presence in the
baseline schedule of stops on the way to work. If it finds some, it assumes they can’t be chained
in the new transit commute, and switches them into a home-based tour before work. Then it
checks to see if the revised schedule allows for timely arrival at work. The rule continues like
this to make schedule adjustments and feasibility checks, eventually arriving at a feasible
alternative. Each time a schedule adjustment is needed, the adjustment is made via an intuitive
decision rule or a simple choice model. The entire rule allows, in order of priority, changes to
sequence and at-home stops, mode, and timing.
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Figure 18
A portion of AMOS’s context specific search for a feasible
schedule adjustment, given the basic policy response of a mode
change from single occupant vehicle to transit. (Source: RDC Inc. 1995)
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In summary, AMOS has two key features. First, it is a policy specific switching model. Because
it is anchored in a baseline schedule and predicts switches based on policy specific survey data, it
has great potential to be very informative in predicting short term responses to specific policy
changes. The second key feature is the three step decision protocol of basic response, structured
search and satisfaction-based decision.

AMOS has a few weaknesses linked to its design. First, it requires custom development for each
policy. Second, validation is needed for each specific policy response model, and the availability
of revealed preference data for this validation is very unlikely. Third, it doesn’t forecast long run
effects. Fourth, it requires the exogenous forecast of a baseline schedule for each application of
the model. Fifth, the basic response and search models may inadequately represent the search
process; the structured search sequence may not match the way some people search, and may
systematically bias the predicted outcomes. Beyond these five design-related weaknesses, the
prototype implementation of AMOS suffers from an incomplete scope; it is unable to predict
changes in non-work schedules, or changes in activity participation, purpose, duration or
location.
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SMASH: Sequential Schedule Building

SMASH (Figure 19) starts with a detailed activity program similar to that required by
STARCHILD. Through an iterative process it gradually builds a schedule using activities from
the program. In each iteration it starts with a schedule (a blank schedule in the first iteration) and
conducts a generic non-exhaustive search, enumerating all schedule adjustments which would
insert, delete or substitute one activity from the agenda. It then chooses one of the potential
adjustments from the choice set and continues the search, or accepts the previous schedule and
ends the search. Conceptually, the model could be used as a rescheduler, being rerun after the
conduct of each activity, but the prototype was not implemented in this way.

Figure 19
SMASH starts with a detailed activity program and an empty schedule. Then it builds the
schedule by adding, deleting or substituting one program activity at a time. A decision is made
each time whether or not to accept the current schedule and stop the building process.
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The choice between schedule adjustment and schedule acceptance is implemented as a nested
logit model. Schedule acceptance occurs when the utility of the schedule acceptance alternative
is greater than that of all the schedule adjustments under consideration in the iteration. A
schedule is more likely to be accepted if it has a lot of scheduled activity time, little travel time,
includes the high priority activities from the program and lacks schedule conflicts.

The key feature of SMASH is the schedule construction process with a cost-benefit based
stopping criterion. SMASH has three major weaknesses. First, it relies on an externally supplied
detailed activity program which includes several important dimensions of the activity schedule,
including desired participation, purpose, duration, location and mode of travel. Second, it
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requires a very complex survey for model estimation. Respondents must step through the entire
schedule building process. Finally, the non-exhaustive search heuristic may be inadequate, and
needs to be validated. Its method of restricting the search domain may systematically exclude
alternatives which people frequently choose.

COMPARISONS OF THE EXAMPLES

We close this presentation with a summary comparison of the six example model systems which
were examined in the two previous sections. In this comparison we look first at the major
differences. Then we look at the three major categories in which the system requirements were
presented, comparing the models’ theoretical weaknesses, the scope of the systems and their
susceptibility to practical problems.

Table 3 summarizes the major differences among the model systems in terms of the categories of
differences we identified earlier. We see the two major classes of model systems. The
econometric models are systems of equations predicting probabilities of outcomes, whereas the
hybrid simulations are systems of sequential rules predicting decision process outcomes. The
econometric models can be implemented as either probability or realization models, because they
assign a probability to each modeled outcome, and the hybrid simulations are all implemented as
realization models, simulating the choice of a single outcome for each individual in the
representative population. The trip and tour-based econometric models are household models,
while the daily schedule model and all the hybrid simulations sacrifice the household framework
in implementing a representation of an entire day’s schedule. AMOS is the only model system
designed and implemented as a switching model.

Table 3
Major differences among the 6 example systems

Probability Household Switch
SubClass vs Vs \&
Realization Individual Synthetic
Econometric Models
MTC Trip PorS H Synthetic
Stockholm Tour PorS H Synthetic
Ben-Akiva & Bowman Daily Schedule PorS I Synthetic
Hybrid Simulations
STARCHILD Classify S I Synthetic
AMOS Satisficing S I Switch
Adjustment
SMASH Schedule S I Synthetic
Building
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Table 4 lists the major theoretical weaknesses of each of the 6 systems. The primary weakness
of the trip-based MTC system and the tour-based Stockholm system is that they fail to integrate
the trips or tours in a complete daily activity schedule. The daily schedule of the Ben-Akiva and
Bowman model overcomes this weakness but is left with a utility-based decision protocol with
an unrealistically large choice set. Each of the hybrid simulations can be challenged as to the
validity of its decision protocol. In each case, specific assumptions about how the decisionmaker
goes about the search and decision are structured into the simulation. These assumptions may be
wrong in enough cases to invalidate the model’s parameter estimates and predictions.

Table 4
Theoretical weaknesses of the 6 example systems

Econometric Models

MTC Does not explicitly model tours or integrated time of day

Stockholm Does not link tours in a daily activity pattern, or integrate the time dimension

Ben-Akiva & Large choice set is behaviorally unrealistic

Bowman

Hybrid Simulations

STARCHILD Sample of alternatives may inadequately represent choice set

AMOS Basic response and search may inadequately represent the search process

SMASH Non-exhaustive search heuristic may not include alternatives persons would
choose

Table 5 identifies the major and minor scope weaknesses of the model systems. The trip-based
MTC system and tour-based Stockholm system do not integrate task sequence and timing into
the daily schedule decision. The design of the Ben-Akiva and Bowman model clearly
incorporates the sequence and timing dimensions, although the prototype implementation did not
fully achieve this integration. More importantly, the representation of time is in Very coarse
discrete categories, limiting its representation in the time dimension. All three of the hybrid
simulations are missing critical dimensions of the decision. Not only would these dimensions be
difficult to predict externally to the model system, but they are also integral components of the
scheduling decision, made interdependently with the modeled dimensions. Finally, the policy
specific nature of AMOS, with its requirement of custom development for every policy, limits its
ability to flexibly handle a complete range of policy issues.
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Table 5
Model system scope. An X indicates a major weakness and an x indicates a minor weakness

| Econometric Models | Hybrid Simulations
Ben-Akiva STAR

System Requirement MTC  Stockholm & Bowman CHILD AMOS  SMASH
Schedule dimensions
Activity participation X X
Purpose X X X
Sequence X X X
Timing X X X
Location X X X
Mode of travel X X X
Resolution X
Policy scope X

Our final comparison is of the model systems’ susceptibility to practical problems, summarized
in Table 6. The trip-based and tour-based models have overcome the major practical problems,
as proven by their implementation in comprehensive operational travel forecasting systems. An
operational implementation of the Ben-Akiva and Bowman model will face challenges
associated with the large daily schedule choice set; the size of the software development effort
and the computational requirements grow substantially with the choice set size. STARCHILD
and AMOS, with structured, context specific search rules, make development and maintenance of
software to represent the search process a particularly daunting task. AMOS’s design as a
policy-specific switching model make the provision of model validation data from before and
after the policy implementation virtually impossible, and SMASH’s requirement of schedule
construction data for model estimation is also problematic.

Table 6
Practical problems of the model systems

| Econometric Models | Hybrid Simulations
Ben-Akiva& STAR
System Requirement MTC  Stockholm Bowman CHILD AMOS  SMASH
Data
estimation X
validation X
prediction X
Logic (software) X X X
Computation (hardware) X
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SUMMARY

We started this presentation by asserting that the motivation for activity based travel forecasting
is that aggregate phenomena of concern to governments are rooted in the activity based travel
decisions of individuals.

We then examined the theory underlying activity based travel forecasting methods. The decision
framework of activity and travel scheduling decisions includes urban development decisions of
governments, developers and firms; the long range mobility and lifestyle decisions and within
day implementation and rescheduling decisions of individuals; and the performance of the
transportation system. Important characteristics of activity and travel demand include the
notions that travel demand is derived from activity demand; household membership influences
individual decisions; and capability, coupling and authority constraints, including our existence
in a time-space continuum, limit our activity and travel choices. Choice theory identifies a
variety of decision protocols, all of which fit in a two stage process of choice set generation and
choice. Finally, individuals use coping mechanisms in order to make decisions with limited
resources when the alternative set is as large and complex as that of the activity and travel
scheduling decision.

We identified the basic characteristics of the various modeling approaches. We first noted the
combinatorial nature of the modeling problem and listed the requirements of theoretical
soundness, scope and practicality which the systems must satisfy. The commonalities among the
modeling approaches include the decision framework, the two-stage choice process and the use
of disaggregate methods. We classified the differences among the approaches along 4
dimensions. The major classification distinguishes econometric models from hybrid simulation
models. Each model system can also be classified as representing either household decisions or
individual decisions, by its operation as a synthetic model or a switching model, and by whether
it predicts probabilities or simulates outcomes.

We described 6 important examples of attempts to incorporate activity based methods into travel
forecasting models., including 3 econometric model systems and 3 hybrid simulations. The
econometric model systems are systems of equations predicting probabilities of decision
outcomes. They focus their attention on the choice stage of the decision protocol. These systems
achieve the needed simplification of the combinatorial problem by aggregating alternatives and
subdividing the decision outcomes. In order of simplicity, the three examples include a trip-
based system, a tour-based system, and a system which represents an individual’s entire daily
schedule. The first two examples are theoretically inferior because they fail to integrate the
sequence and timing of activity and travel decisions, and important associated constraints.
However, they are the only two examples which have been implemented and validated
operationally. The daily schedule system integrates the sequence and timing decisions in the
daily schedule, but introduces complexity which has not yet been implemented and validated
operationally.

Hybrid simulations are systems of sequential decision rules predicting decision process _
outcomes. Based on theories which emphasize human inability to rationally consider all the
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alternatives in complex decision situations, these systems focus attention on choice set
generation. They achieve simplification by assuming a specific search method and subdividing
the decision process into separate sequential steps. The first example assumes a classification
method of choice set generation, the second assumes a particular structured search for a
satisfying schedule adjustment, and the third assumes a sequential schedule building process.
Additionally, all hybrid simulations developed to date achieve simplification by omitting
important dimensions of the activity and travel scheduling decision. The hybrid simulations
have very challenging data requirements for model estimation, application and validation, and
the assumptions they make about the search process have not been validated.

POSTSCRIPT
We briefly consider three questions of interest which our presentation did not attempt to address.

Which activity based modeling approach is best? Our goal in this presentation was to establish a
framework in which the different approaches can be understood and evaluated, and to begin that
comparative evaluation. However, we intentionally stopped short of selecting a best approach.
Indeed, this would be premature, because the most progressive approaches exist only as
prototypes and have not been validated.

What are the future prospects of activity based travel forecasting? The need for better forecasts,
their basis in activity theory, and the advance of computing technology all strongly favor the
development and use of activity based travel forecasting systems. On the other hand,
development costs and risks, and in some cases data requirements, are substantial. They present
major roadblocks which will be difficult to overcome in an environment where planning is
underfunded and compliance is more important than quality.

What about TRANSIMS? We haven’t reviewed TRANSIMS (Barrett ef. al. 1995) because it
doesn’t yet address most of the activity and travel scheduling decisions. Figure 20 shows
TRANSIMS in the context of the activity and travel decision framework we have used in this
presentation. The vast majority of TRANSIMS effort so far has been in the Implementation and
Rescheduling box, with the development of a detailed traffic microsimulation. A route planner,
which encompasses the mode and route choices of the activity and travel scheduling box,
supplies the simulation with its input. Except for the mode choice, which it handles, the route
planner requires detailed schedule input nearly equivalent to the outputs of the activity based
systems we have reviewed. The scheduling approach has not been specified in TRANSIMS.
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Figure 20
TRANSIMS development has focused on a traffic microsimulation which addresses
travel rerouting decisions and the performance of the transportation system.
A route planner takes activity schedule information from an as yet undefined activity
scheduler, adds mode and route choice information, and supplies it to the microsimulation.
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INTRODUCTION

Models for activity-based travel forecasting methods are increasingly developed by researchers
mainly in Europe and the United States in support of policy actions that cannot be addressed by
existing modeling methods and forecasting applications (see Hofman er. al., 1995, and
Mierzejewski, 1996). Since the 1980s, when activity methods were considered as predominantly
esoteric research approaches with very few applications (Kitamura, 1988, Jones, 1990),
significant progress has been done in the three areas of data collection, modeling, and simulation
that are the subject of this conference. In this paper a brief review of some issues that need to be
addressed in the short and long terms are presented. Past unresolved forecasting issues and the
policy context in the U.S. with an example from a program announced recently by the U.S. DOT
are first provided. The paper continues with the basic definitions underlying activity-based
forecasting methods and models and a brief description of accumulated evidence-knowledge that
is found in the literature today. Specific issues for which some exploratory research is needed are
also outlined. These issues are further developed and artificially categorized into short-term (in
need of immediate answers and provision of evidence) and long-term issues that are presented as
a straw man strategic plan for a successful activity-based travel forecasting system that could
become the standard practice in the U.S. Specific issues to be targeted by the workshops in this
conference are provided last.

NEEDS AND POLICY CONTEXT

Dissatisfaction with trip-based forecasting tools and attempts to move practice toward activity-
based approaches predates the milestone legislation of the 1990s in the U.S. (Allaman er. al. ,
1982). Indeed, issues such as forecasting the inputs to travel demand equations emerged as early
as the first development and application of disaggregate choice models (Tye et. al., 1982), which
need detailed sociodemographic information at the level of a trip, an individual, and/or a
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household. Similarly, when aggregate approaches are used (e.g., at the traffic analysis zone),
forecasts of sociodemographic information of the residents need to also be provided and many
methods used in practice are gross approximations that produce many errors throughout the
forecasting exercise (Hamburg et. al., 1983). The 1980s research on this subject was partially in
response to legislation such as the Federal-aid Urban System and the requirement for
Metropolitan Planning Organizations to produce long range transportation plans, transportation
systems management plans, and a list of transportation projects (the transportation improvement
program-TIP). Public agency support (by Urban Mass Transit Administration, UMTA, today
called Federal Transit Administration, FTA) for the Urban Transportation Planning System
(UTPS) made the four-step procedure - trip generation, trip distribution, (trip-based) modal split,
traffic assignment- the standard forecasting tool for evaluating large scale urban facility building
in the 10- to 20-year horizons. The development of this tool took more than 30 years to mature
(for example compare the 1950s applications in Detroit, Chicago, and Pittsburgh to the later
UTPS-like systems in Seattle, Portland, and San Francisco among many others). Over time,
however, the need for more accurate forecasting tools that contain richer analytical and
forecasting instruments to address policy actions has been identified and documented (Bajpai,
1991, provides an example) and has yet to be satisfied. Indeed, emphasis was given more to the
development of operational traffic engineering tools to study short term improvements (e.g., the
TRAF-NETSIM, FHWA, 1994).

In the past five years, the need to examine new and more complex policy initiatives is becoming
increasingly pressing since the passage of the Intermodal Surface Transportation Efficiency Act
of 1991. The intermodal character of the new legislation, its congestion management systems
that are mandatory for metropolitan areas with more than 200,000 people, and the taxing air
quality requirements for selected U.S. regions motivate many forecasting applications.
Substantial forecasting improvements can be clearly seen in a series of applications that have
also been motivated by the Clean Air Act Amendments of 1990 (CAAA) that dictates impact
assessment of transportation control measures and the creation of statewide mobile source air
pollution inventories (Stopher, 1994, Loudon and Dagang, 1994, Goulias et. al., 1993). Lack of
funding for transportation improvement projects also motivates the need for impact fees’
assessment for individual private developments, which in turn necessitates higher resolution for
the regional council forecasting models and interfacing with traffic engineering tools that are
recognized in state and local impact fee legislation (for examples see Levinson and Koepke,
1992, and other papers in the same volume).

This urgency for new forecasting tools is further compounded by the technology “push” under
the general name of Intelligent Transportation Systems (i.e., bundles of technological solutions in
the form of user services that attempt to solve chronic problems such as congestion, safety, and
air pollution). Under these initiatives, forecasting models, in addition to long term land use
trends and air quality impacts, need to also address issues related to technology use and
information provision to travelers. Indicative of this are recent policy initiatives, such as
“Operation Timesaver,” which increase the modeling and forecasting demands for large
metropolitan areas because of the shorter time frame for creating these policy analysis tools.
Operation Timesaver was announced by U.S. DOT at the 1996 Transportation Research Board
Annual meeting. The objective of this program is to achieve travel-time reduction(s) of at least
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15 percent using Intelligent Transportation Infrastructure (ITI) deployed in 75 of the largest U.S.
metropolitan areas within the next 10 years through an investment of $150 billion dollars. The
intended infrastructure will contain smart traffic-control systems, freeway management systems,
transit management systems, incident management programs, electronic toll collection on roads
and bridges, electronic fare payment, railroad grade crossings that are integrated into the overall
system, emergency response providers, and travelers’ information systems. The U.S. DOT’s
vision is that with advanced technology investment we can create much more of the capacity we
would have provided by building new highways (e.g., $10 billion investment in ITI is expected
to provide two-thirds of the capacity needed). This public relations activity shows clearly what is
expected of local regional planning agencies in terms of modeling and analysis. One of the goals
of this initiative is to create transportation systems with measurable deliverable goals through a
demonstration effort in which the future system is developed in stages and at each stage
quantitative estimates of expected benefits need to be provided. This is something that the
UTPS-like procedures were not designed for and obviously are unable to address. In a
hypothetical “timesaver” metro plan we should expect metropolitan areas to provide access and
better level of service using enabling technology (from the ITS portfolio of technologies). Since
this operation is motivated by ISTEA and it is geared toward what is expected to emerge from
the ISTEA reauthorization it is more likely that transportation demand and supply management
will have a multi modal character and will be based on information provision and use by
travelers and traffic managers.

Ultimately, ITI time saving initiatives enable people’s freedom in time allocation (e.g., if 15% of
their travel time is saved, they may use it for leisure and recreation activities or maybe additional
work). Current travel demand analysis and forecasting practices are not sensitive to these shifts
in time allocation because the temporal dimension in the UTPS-like procedures is totally absent
(e.g., to compute the peak hour traffic flow gross factoring is performed on daily traffic
forecasts) and under the best case scenarios partially present through some sort of post-
processing.

Ongoing policy initiatives place more complex issues in the domain of policy analysis and
forecasting to regional councils. In addition to the need for air quality modeling and
transportation demand management impact assessment, regional councils need to also evaluate
the impacts of new technologies, information provision, and pricing/financing strategies (e.g.,
tolls). To do this, their forecasting capabilities need to be more accurate and detailed in space by
increasing the level of resolution of the current traffic analysis zones to capture much smaller
geographic units. Consider for example the interesting exercise of estimating the regional effects
of a corridor information management system and strategies that involve signal timing at
intersections. They also need to predict traffic by time of day at time-slices that are much finer
than the typical “AM-peak,” “PM peak,” and the “remainder of a day” types of daily
segmentations. In addition to this increased resolution and fidelity of forecasting, other temporal
scales need to be considered instead of the single time point forecast in the distant future. This
emerges clearly from the need to consider the effects of staging in project development, which
needs to be incorporated into the usual long range planning process and the submission of TIP
projects with related impacts and comparisons in terms of costs, benefits, and cost effectiveness.
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This is particularly important for projects that attempt to influence travel demand and
transportation supply at the same time.

Most important, however, there is a more basic need for data, models, and forecasting methods
that have been developed from real-life experiences with some of these “new” policy actions.
Projects for which impact assessments are needed are ongoing and will be emerging in the next
two to five years from policy initiatives such as operation timesaver. It is clear, then, that for
activity-based approaches one such initiative is an opportunity to demonstrate the superiority of
activity-based data collection, modeling, and forecasting. While activity-based methods have the
highest potential to address issues of this type, there is no hard evidence from field tests (e.g.,
validated and verified models that have worked in the regional council context). If activity-based
approaches are to become successful in practice, we, as a transportation community, need to
begin implementing and testing these models immediately using current projects as operational
tests (very much like the use of technologies’ operational tests in the Intelligent Transportation
Systems arena).

ACTIVITY-BASED FORECASTING

An activity-based travel forecasting system is a system that uses as inputs sociodemographic
information of potential travelers and land use information to create schedules followed by
people in their everyday life providing as output, for a given day, detailed lists of activities
pursued, times spent in each activity, and travel information from activity to activity (including
travel time, mode used, and so forth). This output is very much like a “day-timer” for each
person in a given region. A complete operational activity-based forecasting system does not
exist yet. However, given the advanced state of research on the subject, we can envision a
hypothetical activity-based forecasting system with the following as its basic ingredients.

Data on time use-allocation (Demand for Service): Information collected from persons on their
current use of their time to participate in out-of-home and at-home activities and for travel from
one activity location to another (called time allocation).

Data on activity opportunities and locations (Supply of Service): Information collected from
places where people can actually pursue activities, including home. It alse includes other
attributes of activity participation such as availability, access, cost, etc.

Person and household time use (activity and travel) profiles: These are the models of time
allocation that function the same way as the typical UTPS-like models for travel albeit in a much
more complex form and providing more detailed information for analysts and planners.

An evolutionary engine (from t to t+x): Clearly the “snapshot” approach, a single time point in
the distant future, to forecasting is surpassed. Alternate future scenarios are much more useful to
decision makers because of the general trends they show rather than for their exact values of the
forecast parameters. Some sort of mechanism that makes a region to evolve over time through
the different stages of sociodemographic, and demand-supply changes is needed to depict the
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paths of, for example, traffic changes and reveals the instances at which policy intervention is
needed. One such engine is called micro simulation.

Interface with other forecasts: The charge of forecasting regional needs is not limited to
transportation. Economic development, housing, water supply, sewage systems, and recreation
facilities are some other important areas that interface with transportation and they are within the
planning domain of regional councils. Forecasts are also provided for these areas using a variety
of methods (e.g., sociodemographic forecasting by cohort-based methods, housing needs by
micro-economic methods, and economic development by macro-economic models). All these
methods need to be interfaced together to at least provide consistent forecasts.

An activity-based forecasting system needs data for model estimation/calibration and simply as
basic inputs. Following the typical subdivision of data and models into demand for service and
supply of service, following are specific examples of data needs.

Demand Side:

1. Longitudinal and geographic information on time use/allocation (activities, travel,
opportunity locations, activity participation durations, and so forth)

2. Sociodemographics (age, gender, employment status, occupation, and so forth).

3. Knowledge of opportunities and level of service offered to people by the activity
locations and the system that brings either people to the activities (transportation) or the
activities to people (telecommunication).

4. Use of technology and information (e.g., use of personal computers)

5. Household resource availability (e.g., car ownership, housing characteristics,
telecommunication equipment ownership, etc.)
Supply Side:

1. Spatial and non-spatial inventory of activity opportunities (e.g., shopping and
teleshopping availability by time of day)

2. Daily, day-of-the-week, and seasonal opportunity windows (e.g., periods during which
specific activities can be pursued)

3. Networks of spatial and non-spatial activity opportunities (e.g., transportation and
telecommunications networks)

Assuming, then, that data on demand and supply are available (see the “Data” workshop
summary in this conference), the next ingredients are models that will transform the data inputs
into specific policy action impacts through observed and postulated relationships. These basic
components are listed below with a brief description:

Sociodemographics and time use profiles: These are functions that are able to depict how
different people use their time differently.
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Household members’ activity allocators: Task allocation within a household is one of the major
determinants of behavior. These are the functions that show which activities are associated with
which member of a given household. These allocators could be also extended to other social
groups to reflect tasks and associated activities when people are members of organized or
spontaneous groups (e.g., a firm and its employees, a neighborhood and its residents).

Activity & travel equations: These are the equations and routines that map specific activity
pattern behaviors to specific travel behavior (for examples see Hamed and Mannering, 1990,
Kwan, 1995, Recker, 1995, Ben-Akiva and Bowman, 1995, Ettema et. al., 1995, Pendyala e. al.,
1995, Ma and Goulias, 1996, Golob, 1996, Golob and McNally, 1996, and Golob et. al., 1996).

Spatio-tempordl models of supply: This is a set of functions that perform the same mapping of
time-use to sociodemographics in the demand side and are needed in supply to correlate
geography with activity opportunity and ultimately predict the desirability of locations.

Residence-workplace relocation and time use: In the U.S. changing jobs and/or residence is a
frequent phenomenon. In this process people go through stages of “cognitive disengagement”
from the previous workplace and/or residence and phases of “cognitive engagement” with the
new workplace and/or residence. As a result their activity and travel patterns go through changes
that should be captured by the activity-based travel forecasting system.

Telecommunications-information and time use: Telecommunications are used today either
intentionally or unintentionally to affect the ways people spend their time. For example,
telecommuting has been proposed as a method to mitigate traffic congestion. In this forecasting
system, models that represent the use of telecommunications and information by people to
participate in activities and travel should also be included.

Lifecycle-lifestyle changes and time use: Lifecycle and associated lifestyle are important
determinants of time use allocation by individuals and their households. The changes in lifecycle
and concomitant changes in time use allocation need to also be reflected in the forecasting
system in a similar way as it is done in travel demand.

Seasonal and day-of-the-week time use profiles: Time use may change dramatically within a
week (e.g., a weekday versus weekend) but also based on seasons (e.g., consider the shopping
and related activities people pursue during the period of Thanksgiving to Christmas in the U.S.).
Models need to incorporate these fluctuations if forecasting is to be done for these periods of
time that are usually excluded from the traditional UTPS-like procedures.

Long-term trends in time use: In addition to the usual source of information for transportation
models (e.g., models from data collected on a representative day or data spanning a few years),
we also need models that depict longer term trends. For example, to estimate models
representing the changing roles and resulting time allocation between men and women and
respective roles in society.
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EVOLUTIONARY ENGINE

Given the data and models outlined above, a forecasting system needs also a routine that uses the
data as inputs and in which the models are embedded to produce forecasts. In practice, these are
a series of logical statements that given an input population in a region create evolutionary paths
of change from a given time point to the next using computer software. We can call this a micro
simulator because it operates at the level of a single microscopic unit (e.g., a person, a household,
or a vehicle). It is a simulation because we numerically exercise a set of models for a given set
of inputs to produce forecasts (as opposed to the use of a closed form and mathematically exact
solution to predict the future). Lack of knowledge and the inherent randomness of human
behavior dictates the need to design these systems with at least randomness in input components
making the evolutionary engine a stochastic micro simulator (Law and Kelton, 1991, and for a
more complete and focused exposition see Miller, 1996, in this volume).

An evolutionary engine attempts to replicate the relationship among sociodemographics, land
use, time use, and travel. The causal links among these groups of entities can be extremely
complex and in many instances unknown or incompletely specified. This is the reason that no
closed form solution can be created for such a forecasting model system. In terms of capabilities,
however, the engine needs to provide a realistic representation of person and household life
evolution (e.g., birth, death, marriages, divorces, birth of children, etc.) and spatio-temporal
activity opportunity evolution while at the same time it accounts for uncertainties in data,
models, and behavioral variation.

INTERFACE WITH OTHER FORECASTING WORK

Many regional councils (MPOs) have made substantial investments not only on UTPS-based
forecasting systems (e.g., software) and data to “feed” their models (e.g., travel diaries and
detailed trip-by-trip mode-specific information) but also on training and education of technical
staff and elected officials. On one hand, as expected there is some resistance to accept and adopt
new forecasting tools that obviously threatens to replace not only the UTPS-like models but also
UTPS “experts.” On the other hand, however, there may be a place for these old-fashioned
forecasting techniques (e.g., as a backup to the new methods). Independently of whether
activity-based forecasting methods are designed as substitutes or complementary to the existing
methods, before their consideration we need to identify specific gains that MPOs may realize by
moving toward activity-based methods today (e.g., begin to think of transportation service
provision as a service that should eliminate barriers from peoples’ productive life). Indeed, from
a time-use perspective new user-benefit measures emerge (Gershuny, 1994, Kitamura et. al.,
1996). These measures are much more realistic and understandable than the nebulous concept of
level of service (e.g., volume over capacity on a link of a network). In addition to a planning
focus shift that may require time, the use of existing data needs to be looked at carefully. For
example, in the recent past, regional councils have engaged in data collection using travel diaries
in surveys (one-day, two-day, etc.). The data from these surveys may be a good source of
information for activity-based approaches that can be used to answer some of the policy
questions MPOs face. In addition, no regional council has attempted to collect time-use data
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over time spans that are longer than two-days. Data from repeated travel diaries have been
collected and, from the behavioral standpoint and resulting model formulation, substantial gains
will emerge from their analysis (e.g., the Puget Sound Transportation Panel at the Puget Sound
Regional Council). Similarly, time use databases exist in the U.S. and they cover many years
providing a rich source of information for changes in behavior over time. Maybe, then, one way
to transition into activity-based forecasting would be to formulate models using data from these
secondary sources, to be incorporated into the UTPS-based forecasting systems.

One of the motivations for this conference is that, on one hand, research-since the 1980s when
activity-based methods were simply research experiments-has provided us with some undeniable
evidence of its potential, while on the other hand, we are still unable to assess the capabilities of
activity-based approaches as forecasting methods that are able to replace the aging UTPS-like
procedures. We know, for example, that activity-based forecasting is more realistic because it
deals with the way people allocate their time, it provides temporally rich information (i.e.,
detailed schedules of activities at high resolution-minute by minute, hour by hour) that can be
used by traffic simulation software, it is based on a more natural framework that is easier to
explain to decision makers, and it supports the development of better cost and benefits service
measures leading to better planning. From the developmental viewpoint, research has produced
new estimating frameworks (see Axhausen and Garling, 1992) and the approach is theoretically
rich allowing to examine more complex issues (e.g., Golledge, 1995). There are, however, many
unknowns about activity-based forecasting. For example, there is no evidence about the
accuracy/precision (or predictive capabilities) of activity-based models, the activity opportunity-
supply data requirements have not been examined and assessed for feasibility, their interface
with existing methods is absent, little information is available regarding model building and
maintenance costs, their apparent complexity to non academic audiences is threatening, and tests
of possible model transferability are totally absent.

If activity-based travel forecasting is to be used in the short-term, we need success stories with
proof of concept applications (i.e., a showcase). Given the prolific research activity in this field,
however, the need arises for an organized impartial, and independent inventory and assessment
of activity data collection methods and activity-travel methods and models. When applicable
this inventory should include an examination of an interface with UTPS (e.g., building on STEP
development in Harvey and Deakin, 1996) and a study of early demonstrations such as in the
Portland, OR, metropolitan area. The creation of an activity-based travel forecasting method
should be preceded by field experiments with, for example, one or more purely activity-based
forecasting systems compared to hybrid methods that use existing resources and improvements
to the four-stage approach. In addition, micro simulation is well established in traffic analysis
and seems to begin to be accepted as a source of sociodemographic forecasting data. These field
tests can include micro simulation in the form of TRANSIMS but also other simpler and less
hardware-software demanding methods for smaller problems. Since alternate approaches to solve
the same or similar problems may lead to specialized applications (e.g., methods for large MPOs
in non-attainment areas versus methods for small MPOs with seemingly no air quality problems),
parallel streams of development seem a reasonable route. This is particularly important because
it sets the stage for the long-term R&D program. Most important, however, given the experience
accumulated in ITS with operational tests, an independent evaluation of these field tests should
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be done. This will provide important input for the long-term development of activity-based
methods. Strong evidence that can provide a proof to healthy skeptics about the forecasting
capabilities of an activity-based approach should be a “showease.” This could be the assembly
of a variety of techniques and models that have the potential of providing undeniable evidence of
superiority over existing methods. For example, the showcase should contain routines and
models that predict sociodemographics using micro simulation, which is a proven technology.
While micro simulation is needed for the “dissagregate” information necessary for activity-based
models it also provides the information needed for the more aggregate UTPS-like models such as
income and employment. It could also contain routines/models that represent the activity supply
inventory for forecasting (e.g., using Geographic Information Systems to pinpoint opportunity
locations). Again, this may have a dual use for activity-based models and for better UTPS-like
methods that attempt to identify specific generators of traffic for equitable traffic impact fee
determinations (see Chung and Goulias, 1996). Then, the usefulness of time use profiles can be
demonstrated in terms of their evolution over time, e.g., supply changes as a result of normal
fluctuation (morning versus evening) an/or as a result of policy actions (e.g., land use ordinances
and zoning regulations). Critical to this demonstration is the validation of forecasting using
repeated surveys of the same people and geographic locations. The last ingredient of a showcase
and not the least is engagement of a regional council as an active participant in this process.
Indeed, the Portland regional agency, which may be a good candidate for showcase, is an active
player in activity-based forecasting and it is realizing some of the benefits of activity-based
approaches.

One of the accomplishments of this conference (and of the TMIP program) may be a vision of
one or more future activity-based travel forecasting methodologies. This longer term R&D
program should consider: (1) Data collection and modeling programs; (2) policy analyses to
support; (3) benefits, risks, and costs; and (4) outreach and training. More specifically, however,
from the methodological viewpoint, attention needs to be paid on the role longitudinal activity
surveys may play in developing new methods (e.g., there is no repeated over time - panel -
survey that collects time-use data in the U.S. for transportation research). In addition, methods to
compare models in terms of their predictive performance are inexistent or very rudimentary
while this topic is an open debate in other fields. A subject related to this regards research needed
to develop these methods together with model verification and validation. None of the existing
forecasting methods, travel and activity-based, is able to address systematically and
comprehensibly current policy problems. Indeed, there is no method that can compare
transportation system management strategies to transportation demand management strategies in
terms of air quality benefits. Also, future policy problems (e.g., impact of widespread use of
cellular communication for trip planning purposes) need to be identified and targeted by new
development research efforts. From a TMIP operations viewpoint coordination with land use
research may lead to benefits to the activity-based forecasting development and land use
research.
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SUMMARY

Activity-based approaches are a necessity that emerged from recent legislation, unsatisfied
technical needs accumulating for the past two decades, and technology applications in the U.S.
and Europe. Current proposed approaches attempt to address new policy questions and chronic
problems and frustration with the aging UTPS-based forecasting methods and the “times are
right” for activity-based forecasting systems for many reasons. Knowledge about activity-based
data collection is at a mature stage (see Richardson et. al., 1995, Stopher, 1996, and Stecher et.
al., 1996), activity model estimation/calibration and related frameworks exist and have been
implemented in various contexts, and long-term frameworks to be used for activity-based travel
forecasting have been designed (e.g., Morrison and Loose, 1995, and Spear, 1994). In addition,
evolutionary engines to perform long-term detailed forecasting based on stochastic micro
simulation are available (Miller, in these conference proceedings). However, practical issues
through demonstration/illustration of the methods remain unresolved largely due to lack of
specific field-tests, which can be attributed to lack of focused funding. As a result early
applications of activity-based methods are promising but incomplete and the need arises for one
or more demonstrations that in turn can show evidence of the new method’s superiority over
conventional methods. One way to speed up the process, of introducing activity-based methods
to regional councils’ ongoing work, would be to integrate these new methods with existing
forecasting work. In addition, many technology tests are under way throughout the U.S. and they
offer a unique opportunity to develop and test activity-based methods. In light of this, then, this
conference may need to address the following in the three parallel streams of workshops.

Data Issues: (1) Data Collection for forecasting (collection methods, secondary use of other data,
inventories of databases) and (2) Data content and cost comparison with travel surveys and
possible secondary use of other databases.

Model Issues:(1) Existence and availability of time use models (activity and travel) and
(2) Model complexity, realism, clarity, and comparison in forecasting potential

(Micro)Simulation Issues: (1) Simulation and uncertainty treatment, (2) Sociodemographics-
locational analysis - schedules and time use profiles, and (3) Evolutionary aspects.
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ABSTRACT

This review describes the emergence of the central ideas within the activity analysis paradigm
and their application to travel forecasting. We posit that three interconnected processes of “ideas
applications” form the basis of scientific development. The first is conceptualization and theory
building. The second is empirical tests and applications: here, we make a distinction between
those in which activity patterns are considered as segmentation variables in travel models, and
those in which travel is incorporated into activity patterns. The third process is the
self-conscious evaluation of the interplay between theory and application: we call this last the
“reflexive nexus.” We provide examples of studies which demonstrate these processes; most
studies emphasize one over the others. This framework places the pathways toward
implementing activity-based travel demand forecasting into more of a cyclical, and less of a
linear, historical context. One example is given of how all three processes have contributed to a
particular of model of activity scheduling. We conclude that activity analysis continues to
develop within waxing and waning periods of inductive theory construction and deductive theory
testing. Extending activity analysis to the realm of travel forecasting should provide
intellectually more satisfying forecasting tools and lead to improved theory.

1. INTRODUCTION

We intend this review to provide a map of activity analysis as applied to travel decisions of
households. We make no claim to providing a complete and detailed map of the terrain; neither
do we wish to leave the reader wandering in the wilderness. Rather, we intend to point out some
of the major landmarks of activity analysis, to give the reader an overview of what activity
analysis has accomplished and a perspective on how these accomplishments came about, and to
prepare and motivate the reader to explore the terrain of activity analysis and its applications.
We offer the following definition of, and motivation for, activity analysis before moving on to
fill in our map.
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1.1  WHAT IS ACTIVITY ANALYSIS?

Several reviews of the activity analysis literature have been written (e.g., Damm, 1983; Jones,
1983; Kitamura, 1988; Jones et. al. 1990; Axhausen and Giérling, 1992; Jones, 1995).
Describing activity analysis, Damm (1983) states: ‘

“These [activity] decisions are not necessarily identical to or made simultaneously with
travel decisions...Instead of focusing on what people do between activities, [activity
analysis] researchers look at what people do between trips. In this vein, it seems more
appropriate to refer to activity scheduling...especially if we assume that activities are
more important than trips.”

Jones et. al. 1990 provide this definition of activity analysis:

“[it is a] framework in which travel is analyzed as daily or multi-day patterns of
behaviour, related to and derived from differences in life styles and activity participation
among the population.”

These definitions contain two essential, and from the perspective of travel demand forecasting,
revolutionary, ideas: the primacy of activities over travel and the primacy of people over
vehicles. These ideas both allow, and require, that we begin to incorporate the wide variety of
personal and social influences that shape both our expressed activity and travel choices, and more
importantly, our freedom to act.

The practitioner of activity analysis generally takes the household to be the source of activity
participation. Individual households and their members are the behavioral units that are the
source of activity participation. Household members' choices of activities are mediated by
systems of constraints that include the structure of family relationships within the household and
by the resources available to the household. “Travel” occurs when people move from one
activity to another separated in space and time.

Activity analysis defines a set of problems for study. This set includes, but is not limited to,
studying how households create activity schedules, mapping activities in time and space,
examining the linkages between people created by the roles they play within their households
and other social groups to which they belong, tracing the resource allocations and constraints that
limit activity choice, and as an outcome of these, examining the physical movements of people
by specific modes and routes. Transportation researchers, planners and designers are concerned
with these last outcomes, that is, with the choices of travel mode and timing, trip duration, and
distance of the trips that link activities. With such information, existing transportation
infrastructure can be managed, and new transportation systems and technologies evaluated.
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1.2 WHY ACTIVITY ANALYSIS?

Any number of other recent articles and reviews reiterate the common arguments for shifting
from a pre-occupation with where vehicles go, to analysis of what people do. The reasons may
be summarized as being of two general types. First, there are criticisms of the inability of
vehicle- and trip-based analyses to provide accurate models of travel and travel behavior.
Second, vehicle and trip based models are not fully amenable to changing policy contexts that
require managing transportation infrastructure and resources. Within the older “four step”
transportation research and planning paradigm, the connections between land uses (which are
aggregates of the types of activities that may be completed within a given geographic space) and
travel were ad hoc models of trip attraction, trip generation, and travel impedance. The
aspiration of activity analysis has always been to replace these ad hoc empirical specifications
with testable theories of human behavior.

1.3 HOW DO WE DO ACTIVITY ANALYSIS?

As a transportation research paradigm, activity analysis is concerned with how households
connect activities separated in space and time. To study how these connections are made, the
activity analyst requires the understanding of several things: why households and their members
engage in different activities, including the linkages between people that are the result of (or
perhaps create) their household and social roles; the physical and social environments that
provide opportunities for activities, resources to access these activities, and the constraints that
limit access; how households and their members learn those environments; and how people
process their activity needs and their knowledge of their environments to develop schedules of
activities. These requirements have spawned searches for theories of activity participation,
development of new data collection techniques (e.g., activity diaries and interactive interview
and survey methods), and novel applications of mathematical techniques and models (e.g.,
pattern recognition algorithms, simultaneous equation systems, synthetic generation of
households and vehicle fleets, and production systems).

1.4 CHARTING OUR COURSE

We take the distinction between activities and travel, and the primacy placed upon activities, as
the point of departure between activity analysis and traditional “four-step” transportation
planning and forecasting. In Section 2, we describe several key “emerging features” of activity
analysis (Jones et. al., 1990). No one of these features identifies an application as an “activity
analysis,” yet together they constitute the essence of this approach in which “activities are more
important than trips.” This section provides a little more definitiog-of activity analysis for those
readers to whom it may be unfamiliar, before exploring how we have arrived at where we are
today.

Then, in Section 3, we trace the manner in which the underlying ideas of activity analysis have
been applied. We present the history of the development of scientific knowledge in general, and
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activity analysis in particular, as intertwined paths of inductive processes of theory building and
deductive processes of theory testing and empirical application. We identify three areas of “idea
application”: development of activity analysis as a framework for conducting forecasting,
empirical tests and applications, and the reflexive interplay between theory construction and
empirical testing and application.

The social theorist Anthony Giddens writes:

“‘Reflexivity” hence should be understood not merely as ‘self consciousness’ but as the
monitored character of the ongoing flow of social life. To be a human being is to be a
purposive agent, who both has reasons for his or her activities and is able, if asked, to
elaborate discursively upon those reasons...” (1984).

Further,

“Thus it is useful to speak of reflexivity as grounded in the continuous monitoring of
action which human beings display and expect others to display.” (ibid.)

Our ability to monitor and elaborate on, our awareness of, the interplay between theory and
application causes us to pursue specific lines of inquiry, e.g., classification of problem domains.
This paper itself is one example of a reflexive inquiry.

We will illustrate each process with a few examples only; our intention, as described above, is to
highlight important landmarks; other authors in these proceedings are charged with presenting
more detailed descriptions of some of the areas of empirical application we briefly describe.
This process oriented history puts activity-based approaches into a more cyclical, less linear,
historical context. We believe this context addresses concerns with describing developments in
activity analysis in a linear sequences of distinct epochs, as raised by Gerardin (1990) in his
response to Pas’ (1990) review. Before concluding the paper, we show how all three processes
have contributed to development one type of one particular model of activity scheduling.

2. FEATURES OF ACTIVITY ANALYSIS

The content of activity analysis is distinguished from other transportation research paradigms by
several features. Jones et. al. (1990) identify seven “emerging features” of activity analysis:

1) Treat travel as a demand derived from desires and demands to participate in other,
non-travel, activities;

2) Focus on sequences or. patterns of behavior, not discrete trips;

3) Analyze households as the decision-making units;

4) Examine detailed timing and duration of activities and travel;

5) Incorporate spatial, temporal, and inter-personal constraints;

6) Recognize interdependence among events separated in space and time; and
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7) Use household and person classification schemes based on differences in activity needs,
commitments and constraints.

Based on the recognized importance of dynamic analysis, the need to examine activities over
multiple time periods, and as an extension of Jones’ et. al. sixth feature, we would add to this
list:

8) Analyze activities and travel within longitudinal (dynamic) frameworks.

We illustrate these eight features with studies that include them. This list of examples is of
course not a census of activity analysis. Also, we do not attempt to provide complete descriptions
of each of the example studies, most of which include several of the features listed above.

1. Travel is derived from demand for participation in non-travel activities. This is simply a
statement that very little travel is undertaken for its own sake: most travel is undertaken to
engage in an activity at some other location (and future time). This feature has been
operationalized in a number of ways. First, a number of theories of activity participation have
been proposed, some examples of which are cited later in the paper (Section 3.2). Supernak
(1990) develops a conceptual model of “activity utility”. One (assumed) attribute of “utility”
within his framework is that the utility of separate activities and the disutility of the separate trips
to access them are cumulative (though he does not specify over what time period utility
accumulates). He points out that by subordinating travel to activities and examining the
combinegd utility of an entire daily activity schedule and the associated disutility of traveling to
complete that schedule, one can offer explanations for...

“...some disappointing results from disaggregate models applied to choices such as mode
choice. A modelling effort aimed at minimizing disutility of travel may easily
misrepresent the actual effort made by traveler i (or, rather, activity participant i) who is
trying to maximize the overall utility of the action A (set of actions) that involves both
activity and travel.” (ibid.) (Empbhasis in the original.)

One example of an attempt to operationalize a connection between activities and travel is
contained in van Wissen et. al. (1991). They estimate a simultaneous dynamic travel and activity
time allocation model. While recognizing that spatial dispersion and differences in the quality of
activity locations, as well as differences in activity scheduling by individuals, are central to
predicting travel based on activity patterns, they adopt a simplified framework in which travel
time for each activity is proportional to the amount of time allocated to that activity.

2. Sequences or patterns of activities and travel. Tracing sequences or patterns of activities goes
back at least as far as Higerstrand’s (1970) work on time-space paths. Recker et. al. (1983)
applied pattern recognition algorithms to the problem of identifying patterns in household travel.
Huff and Hanson (1986) characterize the degrees of repetition and variation in household travel
activity patterns. Pas and Koppelman (1987) identify determining factors in the degree of
variation in day-to-day travel of different people. They conclude that people with fewer
economic and role related constraints, and those whose personal and household needs do not
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require daily participation in out-of-home activities, show the highest day-to-day variation in
their travel.

Somewhat paradoxically perhaps, many analyses of activity and trip sequences have given
particular prominence to the effect of one trip type (activity) on travel. The prototypical example
is the work trip, going back to Cullen’s (1972) identification of the work trip as a “peg” around
which other activities are scheduled. Work trip studies form part of the basis for the three part
distinction (home-based work, home-based non-work, and non-home based) employed by many
researchers and practitioners today. Other examples of specific trip types that have received
attention include Kitamura’s (1983) analysis of “serve passenger” trips, Kim’s et. al. (1994)
examination of trip chains that contain shopping trips, and Sands and Smock’s (1994)
consideration of trips to places of worship.

Trip chaining is one example of how sequences of trips have been analyzed. Analyses of trip
chains is an intermediate step between studying single trips and studying activity patterns; while
giving attention to the inter-connection of some activities, focusing on single chains may fail to
capture the connections between chains. The use of trip chain concepts continues to be
emphasized in a number of studies and a session of the 1996 Annual Meeting of the
Transportation Research Board appears to have been at least partially devoted to the practical
application of trip chaining; three papers from that session deal with this subject (Vovsha, 1996;
Schultz and Allen, 1996; Shiftan and Ruiter, 1996). In a departure from trip chaining, Axhausen
(1990) proposes a method for combining models of activity chains with models of traffic
network flows. Though further from practical application than trip chaining concepts, the recent
efforts to develop models of activity scheduling (such as those cited below in Section 3.2) offer
the most complete treatment of how households plan to execute sequences of activities.

The idea of patterns of behavior has been contrasted with variance, variability and other
measures of non-patterned behavior. The existence of patterns of activity participation is implicit
in the seventh item in this list of features of activity analysis. Classification requires that we be
able to group households that are more like each other than they are like members of other
groups.

3. Analyze households as the decision-making units. We make the following distinction
between this feature and the seventh in this list: we illustrate this point with studies of
decision-making within households; we will illustrate the seventh point with studies that employ
household and person classification schemes as variables to segment the analysis of activity
schedules or travel. Examples of recent analyses of decision-making within households include
Ahrentzen’s et. al. (1989) analysis of gender roles in the allocation of space, time and activities
within the home, Kiker and Ng’s (1990) test of a simultaneous equation model of spousal time
allocation under conditions of interindividual and interactivity simultaneity, Solberg and Wong’s
(1991) test a Gronau model of household allocation of time to leisure, home production, market
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work and work related travel and Manke’s ez. al. (1994) study of the distribution of in-home
labor between women, men and children.?

4. Examine timing and duration of activities and travel. There has been a distinct cycle of
methodological developments in the treatment of activity duration. Early efforts analyzed
activity duration within the framework of discrete choice models and utility maximizing
behavioral models, e.g., Kitamura (1984). Later, van Wissen et. al. (1991) applied a system of
simultaneous equations to a dynamic analysis of household allocation of time to out-of-home
activities and travel. In the latest revisitation to modeling activity duration, hazard models are
being applied, e.g., Hensher and Mannering (1994), Ettema, Borgers and Timmermans (1995),
and Niemeier and Morita (1995).

5. Incorporate spatial, temporal and inter-personal constraints. Analyses that address one or
more of the types of constraints range from time and space constraints explored by Kitamura ez.
al. (1990), to the household roles explored by Niemeier and Morita (1995). A particular focus of
this research has been the evolution of gender roles and the reconciliation of personal and
professional demands (Hanson and Hanson, 1980; Greico et. al., 1989).

6. Recognize interdependence among events separated in space and time. As one example, a
recent study explores the interdependence of separate events within the activity patterns of a
single person (Purvis, Iglesias and Eisen, 1996). This study show an inverse relation exists
between work trip duration and the frequency of home based, non-work trips: as the duration of
the work trip increases, the likelihood of making non-work trips from home, after arriving home
from work, goes down.

7. Use household and person classification schemes based on differences in activity needs,
commitments and constraints. This statement clearly implies that household and person
classification schemes should be based on differences derived from activity participation. It has
been far more common though that household and person classification schemes have been based
on the characteristics of people. Clarke and Dix (1983) point out that household level
classifications are widely used in trip generation models.

2 The Ahrentzen et. al. (1989) and Manke et. al. (1994) studies are concerned with the
allocation of space, time, and activities solely within the home and might therefore seem to be
out of place in a paper on activity-based applications to travel forecasting. We include them
because in-home activities have been widely, and incorrectly, ignored in travel analysis. One
study of the effect of work trip duration on non-work trip generation was unable to distinguish
whether workers, who were at home, were there because they were ill, on vacation,
telecommuting, or on a scheduled day off, because no questions were asked about in-home
activities (Purvis et. al., 1996). Further, despite the importance of home as a center of a wide
variety of activities, all in-home activities are often grouped together as if they were a single
activity. However, the reasons we travel to home at a specific time and at a particular point in a
sequence of activities may be linked to a specific activity to be done at home.
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Household classifications based on “lifecycles” or “life stages™ use socio-economic variables as
proxies for differences in activity needs, commitments and constraints. These life stages are
defined primarily by the presence or absence of children, age of children, age of heads of
household, number of heads of household, and employment or retirement status of household
members. Clarke and Dix (ibid.) analyze the relationship between lifecycle groups and time
budgets. Their results indicate the existence of systematic variations in how adults in some
household types spend their time. There are, however, types of households whose adults’ time
budgets cannot be clearly distinguished. They reason:

“That we could not distinguish between [some] groups...on this [lifecycle] basis does not
necessarily mean that households in these groups are homogeneous. They comprise
families with no children under five and older couples with no children, and although
they exhibit similar activity budgets...they may well experience different constraints on
their behaviour which result from the structure of their families.” (ibid.) [Ellipses added.]

This result echoes the caution sounded by Brog and Erl (1980) that descriptors of people may not
capture the relevant attributes of their subjective evaluations of their objective “situations.”

Their concern is echoed by empirical work by Kunert (1994), who concludes that “even for well
defined person categories, interpersonal variety in mobility behavior is large but has to be seen in
relation to even greater intrapersonal variability.”

However, analysis of activity participation and travel by socio-economic and demographic
groupings can be instructive and may be appropriate for questions of equity. As an example,
Hanson (1977) analyzes transportation deprivation of the elderly by comparing their travel to that
of the non-elderly population.

Also based on socio-economic classifications, Ferguson (1990), for example, examined how
household composition affected choices of residence location and the journey to work; Strathman
et. al. (1994) compared differences in trip chaining and non-work travel between households
grouped by demographic structure.

8. Analyze activities and travel within longitudinal (dynamic) frameworks. There are several
reasons for making explicit the several dynamic processes implied in activity analysis.
Activity-based approaches are concerned with the analysis of events unfolding over time, and
often unfolding over different, but intertwined, time scales. Household and person classifications
will change, both as individual households evolve and as all households adapt to changing
environmental conditions. We cannot observe Jones’ et. al. sixth feature without a dynamic
framework. Following Hanson and Burnett (1981) and Dix (1981), Lee-Gosselin (1995) recalls
the distinction between expressed choice and freedom to act, and further asserts that “if choice is
a process, then understanding behavioural outcomes under constraints requires dynamic
measures of freedom to act.”
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3. TOWARD APPLICATIONS OF ACTIVITY ANALYSIS: THREE PROCESSES OF
SCIENTIFIC DEVELOPMENT

We describe here the three processes that underlie the building of an activity analysis framework
for forecasting: conceptualization of activity analysis as a set of theoretical constructs, empirical
testing and application of those constructs, and the intentional, reflexive interplay between those
two processes. We can assign approximate timelines to these processes, but they are not three
separate lines. The conceptual development of activity analysis can fairly be said to have been
emphasized first, followed by the first empirical tests, and then the first efforts to assess progress,
refine theory and formulate new empirical problems. However, these periods do not define
distinct epochs, rather they identify three processes that wax and wane in cycles across time. We
do not attempt to trace the entire development of activity analysis through these cycles, but rather
‘demonstrate the development of theory, applications and interplay between them by reviewing
illustrative developments of each of them.

3.1 CONCEPTUALIZING ACTIVITY ANALYSIS

3.1.1 THE ROOTS OF ACTIVITY ANALYSIS AND THE CONCEPT OF ACTIVITY
SPACE

A few studies that we would as classify as activity analysis pre-date Héagerstrand's (e.g., Mitchell
and Rapkin, 1954; Chapin, 1965). However, the intellectual roots of activity analysis are found
primarily in geographical studies that delineated systems of constraints on activity participation
in time-space (Hégerstrand, 1970) or identified patterns of behavior across time and space
(Chapin, 1974), and in psychological studies of why people participate in activities and how
those motivations are mediated by social structure (Fried et. al. 1977).

As analysts looking into households’ lives through the often murky window of our survey
instruments, we are faced with the question of whether observed routines in household activity
choices are behavioral responses to the apparent complexity of all possible activity choices. The
realm of all possible activity spaces through which a household might move is, from the
observers perspective, quite complex. It was part of Hagerstrand’s (1970) admonition that the
analyst could construct a more tractable problem by paying attention to people, not the myriad
possibilities of the world. He argued for the need to examine spatial relationships as expressions
of human behavior and for a set of organizing principals around which to begin such an
examination (ibid.). Thus, his space-time prisms were the more confined regions of time and
place in which a person could exist. Discontinuities of existence in time are not allowed and a
person's possible locations in space at one point in time are determined in part by their locations
in space at preceding points in time and anticipated locations in the future. Understanding the
constraints which form the boundaries of those prisms, we reduce the area of space and time we
must search to find the activity schedule the person actually executes, that is, Hagerstrand’s
time-space path.
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HOW CONSTRAINTS SEGMENT THE TIME-SPACE PRISM

Central to defining the shapes and sizes of these prisms and the paths through them, Higerstrand
proposed a typology of constraints: capability constraints, coupling constraints, and authority
constraints. Capability constraints arise from biological requirements and the tools available to
an individual. Some capability constraints, notably biological constraints such as sleep and
sustenance, follow the individual throughout their time-space path, but are typically satisfied at a
single, home location and require a certain minimum amount of time.

Different travel modes impose different capability constraints on our movement through space
and time. Distances between activity locations can be mediated by movement (of people or
goods) or communication by either inherent physical abilities or the use of tools. Thus we travel
by a combination of certain physical functions and tools—walking, bicycles, buses, autos, etc.
We communicate either directly through our senses or by communications technology. Thus the
time-space prism through which an individual moves can be divided into regions of varying
accessibility, depending on her physical capabilities and the availability to her of different travel
and communication tools.

While capability constraints define the limits of our time-space prism, our path inside that prism
is determined in large part by coupling and authority constraints. Coupling constraints “define
where, when, and for how long, the individual has to join other individuals, tools, and materials
in order to produce, consume and transact.” (ibid.) To get a haircut, we must arrive at the barber
shop during the hours it is open, and if we are particular, on a day our favorite barber is working.
Paid employment may require that we interact with other people and tools on a particular
schedule at one or more locations. Authority constraints define domains within the time-space
prism to which an individual either controls the access of other individuals or to which his access
is controlled. '

Empirical research has shown that household travel can be explained by this framework of
constraints. For example, Kitamura, Nishii, and Goulias (1990) show that choices of timing and
location for non-work activities by commuters are consistent with a set of hypotheses based on
the constraints Hagerstrand proposes. Those authors found that coupling constraints (shop
opening times) and authority constraints (work start times) severely limit the number of
non-work trips made before work. Because of authority constraints and capability constraints,
non-work activities made during work-time are tightly clustered in space around the work
location and tend to be either work-related trips or trips to eat. Non-work trips made after work
access a wider variety of activities, and though spatially clustered around home, are not as tightly
clustered as either before- or during-work trips.

Niemeier and Morita (1995) argue that “work trips” in general should be considered
multi-purpose trips since non-work activities are frequently accessed on the trip from work to
home (though less so on the trip from home to work). They further show that the differing roles
and responsibilities of women and men within households impact relative activity duration for
shopping during these trips between work and home. For a given participation by a woman or a
man in shopping, the woman is likely to spend more time on the activity. Thus, they also
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demonstrate how household responsibilities systematically shape the time-space prisms of
household members.

TIME-SPACE PRISMS AND HOUSEHOLD ACTIVITY SPACE

Our use of the phrase activity space to describe the sets of activities that households access is
based on definitions used by Horton and Reynolds (1971) in their initial development of an
analytical framework to examine the effects of urban spatial structure on individual behavior. If
Héagerstrand defined the limits of the time-space prism; Horton and Reynolds provided additional
insight into how households choose paths within the prism.

They defined objective spatial structures as the location of a household relative to the objective
locations of potential activities and their associated objective levels of attractiveness. By
“objective” they mean that relative locations are measured by some standard meter, e.g., changes
in degrees of latitude and longitude, applied to all locations. This objective spatial structure
contains linear features (e.g., transportation networks, commercial “strips™), nodes (e.g.,
shopping centers, individual residences or manufacturing plants) and surfaces (e.g., residential
population densities). Further, they define a household's action space as that group of all
locations or nodes within the objective spatial structure about which the household has
information and the subjective utility the household associates with those known locations. This
subjective utility may be a function of linear features connected to the node (e.g., how accessible
is the location by various transportation networks) and surfaces in which the node is embedded
(e.g., whether the location is perceived to be located in a safe area). Finally, they define the
household activity space as the subset of all locations in the action space with which the
household has direct contact as the result of day-to-day activities. Thus a household's activity
space can be described by a set of realized paths through Higerstrand's time-space prism. The
home location, as the point from which all else in the activity space is perceived, is itself part of
the activity space.

Horton and Reynolds go on to postulate a theory of learning that directs activity space formation
and change. While a household may reach a point where its activity space remains relatively
stable, all that is required to produce a change in the activity space is for the household to add
one location to its activity space from its current action space or delete one location from its
existing activity space. A change in the action space itself requires learning of a new feature of
the objective spatial structure and forming an initial assessment of its subjective utility. Changes
in the objective spatial structure typically take place outside the control of a single household.
Such changes are typically long-lived additions or removal of nodes (e.g., a new shopping mall),
linear features (e.g., a new bus route), and surfaces (e.g., agricultural land newly incorporated
into a city for urban development).

3.1.2 ACTIVITIES ACROSS TIME

Very early in its conceptual development, activity analysis focused increased attention of
transportation researchers on the dimension of time. Time is conceptualized as being both
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unidirectional and constant in its flow. We can change the speed and direction we travel through
space, but not the speed and direction of either time itself or our movement relative to it; we are
unable to stop the flow of time or reverse our course. Therefore, time serves as a different
organizing principle for much of human activity than does space. We use time to order activities
throughout time periods of different lengths. We progress through time, but do so in socially
constructed, as well as “natural” or biologic, periods and cycles. We may schedule today in
detail, plan next month, and speculate about next year, all while moving through “life stages”
identified by changing household structures, peer and social group memberships, careers and
lifestyles.

The incorporation of time into activity analysis remains problematic, in large part because of
inadequate conceptualizations of time itself. Prince (1978) observes that while it is sometimes
convenient to conceive of time as a “fourth dimension”, it is in fact fundamentally different from
the spatial dimensions. Among the differences he identifies: we cannot combine temporal and
spatial units; there are no time equivalents for area and volume; space is omni-directional while
time is conceived to be uni-directional and irreversible. Leach (1966) argues that all concepts of
time can be reduced to two basic ideas: uni-directional change and repetition or cycles. Yet this
possible simplification ignores that uni-directional change and cycles have both physical and
social meanings, which may change depending on the degree of uni-directional change (how far
in the past, or how far in the future) and the length of the cycle (from diurnal cycles to the birth
and death of succeeding generations.) We should also add that subjective notions of time are not
very straightforward either, and vary across cultures.

The lack of a unified conceptualization of time in activity analysis has lead to a variety of
treatments of time. Some practitioners treat time as a resource to be allocated; others treat it as a
constraint on the allocation of other resources; still others treat travel time as a cost, while
simultaneously treating all other time as either a resource or constraint for other, non-travel,
activities. Further, activities can be ordered in sequence through time; starting and ending times
for activities can be chosen: these choices must often be made simultaneously since many
activities cannot overlap in time. Thus activity order and duration are often interrelated choices,
that themselves may be affected by past activities and expectations of future ones.

A recent effort to inform the resolution of some of these issues is Pas and Harvey’s (1991)
review the time use literature. They point out mutual benefits to transportation researchers and
time use researchers of a increased interaction between the two fields. Transportation research in
general, and activity-based approaches in particular, could benefit from advances in data
collection methods and empirical knowledge of household time use; time use research could
benefit from the treatment of time use within a spatial context.

Recently, considerable attention has been given to the problem of activity scheduling, which
raises questions as to the meanings of time. Many of these questions could be ignored so long as
we took an observed activity schedule as given and looked for patterns and regularities in travel
associated with that activity schedule. And though there have been several studies of activity
choice and activity duration choice (e.g., Hensher and Mannering, 1994), most have been
conducted within the context of a single, short time period. That is, activity choice and duration
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have been studied for the period of (most often ) one day, but few of these studies have
considered how household planning for other time periods (say, the week) affected the
scheduling (activity participation and duration choices) for the day under consideration. Some
exceptions are Huff and Hanson (1986) and Pas (1988). The former examined differences in
activity participation between daily, weekly and monthly time periods. The latter examined
some interactions between daily and weekly travel-activity patterns. Pas hypothesized a two-step
process in which weekly behavior is determined first, then conditional choices are made
regarding daily travel-activity. His analysis did not reject the hypothesis that socio-economic
characteristics of the respondents affected their choices of weekly patterns, but not the
conditional choices of daily activities and travel.

3.1.3 THEORIES OF ACTIVITY PARTICIPATION

The activity analysis paradigm has yet to develop or adopt a comprehensive theory of activity
participation. The lack of such a theory was not such a problem so long as we were concerned
only with problems that took activity schedules as given. Lacking such a theory though, we are
unable to assess either motivations for choosing to participate in a given activity or decisions as
to when and for how long to engage in an activity. Lacking such a theory, any modeling of the
selection and prioritization of activities, that is, any empirical application of activity
programming or scheduling models, will be necessarily ad hoc.

Chapin (£978) applied a simple theory based on Maslow’s “hierarchy of needs” (Maslow, 1970)
to his investigation of differences in activity patterns between different socio-economic groups of
people. In their application of a “situational approach™ to explaining household activity patterns,
Brog and Erl (1983) emphasized an individual’s subjective evaluations of the “...certain number
of options [given] by his environment; this is the objective situation.” They caution against
expecting that socio-economic variables will account for the situational contexts, and suggest
that, to understand behavior, a chain of “objective circumstance—personal
perception—subjective situation—individual decision—behavior” must be modeled (Brég and
Erl,1980). Tonn (1983a, 1983b) delineated a system of activity participation, but acknowledged
he had to draw on an eclectic blend of psychological theories and maxims, none of which he
concluded could be regarded as widely accepted. Several analyses of activity participation and
duration have employed utility theory—whether strictly interpreted or incorporating some
variation, such as satisficing rather than maximizing rules for choices among alternatives.
Examples include Adler and Ben-Akiva, 1979; Damm and Lerman, 1981; Kitamura and
Kermanshah, 1983; Kitamura, 1984; Kawakami and Isobe, 1986; Recker et. al. 1986a, 1986b;
and Munshi, 1993.

The choice of this “rational” model has been contested on several counts. Girling et. al. (1993)
argue that discrete choice models (a subset of utility-based models) cannot model the interactions
between choices or between choosers and that utility models attempt to reduce inherently
non-comparable elements of choices to a single scalar. Of these, the more compelling argument
is the lack of interaction between choosers (decision makers), especially within the context of
activity analysis which explicitly recognizes collections of decision makers (households) as the
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source of fundamental constraints, resources, and activity participation. Studies from Jones, et.
al. (1983) to Lee-Gosselin (1990) to Kurani er. al. (1994) have demonstrated the role of the
household in shaping activity participation and travel.

Bhat and Koppelman (1993) have proposed a framework of individual activity program
generation. It views individual’s needs as emanating solely from membership within a
household. “Subsistence” and “maintenance” activities are viewed as generated by the
household. “Leisure” activities are viewed as arising from the needs of each individual. Their
proposed structure of household decision making starts with the generation of subsistence and
maintenance needs. In the case of subsistence, these needs are measured by the employment
status, income, and work hours of the two households heads. The subsequent allocation of
subsistence and maintenance activities to household members is mediated by automobile
ownership. This allocation serves as input to individual decisions about leisure. One limitation
of the framework, as noted by the authors, is that it is restricted to couples and “nuclear”
families.

3.2 EMPIRICAL TESTS AND APPLICATIONS

The second process concerns the testing and application of empirical specifications—models—of
theoretical constructs. Here, it will be useful to distinguish between two approaches which differ
in how travel and activities are linked. We label applications in which travel models function
differently for different segments of the study population, depending on differences in the
household activity patterns of those segments, as “segmentation” approaches. “Integrated”
applications are those in which travel is integrated as a endogenous element of household activity
patterns. This distinction is alluded to in a section of Jones’ et. al. (1990) review on the
contributions of activity-based travel research to applied modeling: they distinguish between
improved specifications of existing trip-based models and the development of activity based
models. They observed that the latter contributions were “much less developed” than the former.

3.2.1 SEGMENTATION APPROACHES

It is our sense that the observation of Jones ez. al. (ibid.) is still true today. They observed that
the application of activity analysis concepts by planning organizations appears to be following a
path leading toward adjustments to existing travel demand models through the incorporation of
new independent variables, the creation of linked sub-models to incorporate interdependencies
(e.g., those caused by the interaction between household members roles and household vehicle
availability), and the development of new dependent variables. Another “adjustment” application
would be the use of “activity variables” to segment travel demand models, that is to estimate
distinct models for different households depending on some measure of activity participation.
As noted in the companion paper in this conference by Lawton (1996), since 1990, there has
been “a gradual progression in the USA, of expansion of the scope of the (MPO) travel survey
and a gradual transformation into a household activity survey,” starting with Boston and Los
Angeles. The initial stages of this progression favored the segmentation approach. Purvis et. al.
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(1996) model the effects of work trip duration on non-work trip generation. They estimated
separate models to predict two dependent variables: the total number of home-based shop/other
trips and home-based social/recreation trips.

3.2.2 INTEGRATED APPROACHES

Activity analysis aspires to provide a framework for analyzing travel demand. Recognizing that
travel is derived from activity participation, much of the recent research on activity scheduling is
directed at integrating travel into activity participation models. Such an integrated approach
would allow for more complex household adaptations to be modeled. To the extent the
motivation for improved travel demand forecasting tools is the need to better manage existing
facilities, and to the extent that this need is driven by real or potential congestion due to the lack
of resources or desire to build new capacity, we are forced to recognize that characteristics of
trips affect the formation of activity schedules. A trip based model would not predict increases
in evening peak travel due to congestion (an increase in the cost of the trip). An integrated
activity/travel model, that includes joint decision making within households, household
scheduling of activities and travel outside the evening peak, and other features of activity
analysis (discussed below), could explain why individual households would choose an adaptive
strategy (e.g., linking a non-work activity to the evening commute trip home) which, when
summed across an urban area, results in still greater (or longer lasting) congestion.

We provide examples of empirical tests and applications within two recent areas of
investigation—dynamic analysis and household activity scheduling. Our examples form neither
an exhaustive nor exclusive list. Again, our examples are few because our aim is to point out a
few landmarks and because the other authors at this conference will cover several empirical
applications in greater detail. Also, we note that our first class of examples—dynamic
analysis—and the specific examples we give—micro-simulation and structural equation
systems—do not represent activity analysis, per se. We remind ourselves that it is the conceptual
framework, not the analytical tools, that defines activity analysis.

DYNAMIC ANALYSIS

Dynamic analysis is the study of unfolding events over time, and the search for relations in the
sequencing, duration and accumulation of events. In an earlier review of activity analysis, Pas
(1990) states that “Within the last five years [circa 1985], we entered what undoubtedly will
come to be known as the era of dynamic analysis, or as Wrigley (1986) terms it, ‘the era of
longitudinal data analysis.” “ Two approaches toward developing applications of dynamic
analyses are micro-simulation and structural equation systems. We place studies from the latest
round of interest in dynamic analysis within our classification of empirical applications because
they are largely efforts to develop longitudinal analysis techniques. Wrigley (ibid.) identifies two
earlier rounds of interest in longitudinal analysis in the field of human geography. These periods
of earlier interest were focused more on conceptual development and data collection methods. In
the applications cited below, the data analyzed are from the Dutch National Mobility Panel.
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Micro-simulation is distinguished from other empirical applications by the manner in which the
aggregation problem is addressed. One stumbling block in the path to forecasting models has
been the question of how to aggregate highly detailed household analyses up to representative
samples. Micro-simulations generate “synthetic” households who, in aggregate, form a
representative sample of the study population at the start time of the simulation. The future
travel of these “electron-citizens” is modeled based on their simulated life trajectories. These
trajectories can include changes in life stage (or some other socio-economic and demographic
measures), residential location, vehicle ownership and other variables.

In MIDAS (Kitamura and Goulias, 1991), a dynamic model of travel behavior is combined with
a “demographic accounting system” in which

“household evolution over time is modelled at two levels, the household and the -
individual. The building block of the household evolution is the household type
transition. Around this transition, household members are made to change education,
drivers’ license holding, employment, and personal income.” :

Mobility for each generation (year) of synthetic households is then modeled based on the
characteristics of the household in the current generation and their travel (mobility) in their
previous generation. This work provides some of the basis and background for the current
development of TRANSIMS and AMOS, a micro-simulation model system of daily travel and
activity.

Structural equation systems: Golob (1990) describes one application of a model based on a
structural equation system. The specific empirical problem he addresses is determining the
relationships between income, car ownership, car travel and transit travel as those relationships
change over time. Golob describes a structural equation model as:

“...a specific type of simultaneous equation system in which the variables are divided
into two sets—endogenous variables and exogenous variable—and each equation in the
system represents the direct effect of one variable upon another variable.” (ibid.)

Further, with respect to dynamic analysis,

“[structural equation] models can incorporate changes over time...of several variables
simultaneously, while also including lagged causal relationships between variables.”
(ibid.) [Ellipses added.]

HOUSEHOLD ACTIVITY SCHEDULING

The development of models of activity scheduling has proceeded through several cycles of
theorizing, empirical testing, and reflexion. This development included the design of activity
and travel choice models based on the economic theory of utility maximization and subsequent
adjustments to these models to reflect information costs and utility satisficing. Most recently, a
number of models have been developed around alternative assumptions of human decision
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making capabilities and processes. These alternatives to utility maximization assume more
limited cognitive ability, the use of heuristics (cognitive short cuts), or rule-based decision
procedures. The behavioral basis of these models is not in economics, but in cognitive
psychology (Simon, 1990; Heath ez. al. 1994), everyday problem solving (Sinnott, 1989) and
artificial intelligence (Hayes-Roth et. al. 1979; Hayes-Roth and Hayes-Roth, 1979; McCalla and
Schneider, 1979).

Some early models of activity scheduling attempted to make modifications to utility maximizing
frameworks in accordance either with activity analysis concepts or alternatives to rational models
of human cognitive ability and process. The CARLA model of Jones et. al. (1983) identified a
subset of feasible alternative schedules according to a system of constraints similar to
Hégerstrand’s. Root and Recker’s (1983) STARCHILD model selected a schedule from all
possible schedules based on satisficing, rather than maximizing, rules.

The most recent activity scheduling models are built around the architecture of production
systems. For example, Girling et. al. (1989) proposed, and then further described and developed
(Gérling, Kwan and Golledge, 1994), a model known as SCHEDULER. Itis a production
system, described as

“...a set of rules in the form of condition-action pairs that specify how a task is
solved...[it] is also conceived as being realized in a cognitive architecture featuring a
perceptual parser, a limited-capacity working memory, a permanent long-term memory,
and an effector system” (Grling, Kwan and Golledge, 1994). [Ellipses added.]

The SCHEDULER framework is limited to individuals’ (rather than households’) choices of
activities, activity duration and departure times, all within a specified period of time.

In another activity scheduling modeling effort, Ettema et. al. (1993a) appeal to Simon (1990),
(Hayes-Roth and Hayes-Roth, 1979) and Girling (1993) to argue that production systems
represent suitable frameworks for the activity scheduling problem. They do point out that one
problem with production systems is the lack of calibration methods and data to estimate and
evaluate the efficacy of any given production system in replicating activity scheduling. To
overcome the data problem, Ettema e. al. (1993b, 1994) develop an interactive, computer
program, Method of Activity Guided Information Collection (MAGIC), to collect data on
individuals’ activity scheduling behavior.

3.3 THE REFLEXIVE NEXUS

The final process we review here are what we have called “reflexions”. Two types of these
efforts are those that define appropriate contexts and domains for the application of theories and
empirical tools, and those that summarize accumulated experience and thinking, link empirical
and theoretical advances (and failures to advance), and provide a vision for future development.
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3.3.1 DEFINING CONTEXTS AND DOMAINS

Heggie and Jones (1978) wrote one of the early papers within activity analysis that delineated
distinct realms with different possibilities for modeling and measurement. Their four domains
were defined according to the degree of dependence between decisions along two dimensions:
interpersonal and spatio-temporal. The four domains were identified as: (i) independent; (ii)
spatio-temporally linked; (iii) inter-personally linked; and (iv) linked on both dimensions. The
last two domains were subdivided according to whether the linkages function predominately
within or between households. They argued that utility maximizing models of behavior were
appropriate for the first domain, of fully independent decisions, but that there were few utility
maximizing solutions known for any of the three inter-dependent domains—all of which form
the largest part of problems of interest in activity analysis.

Lee-Gosselin (1995) has recently reviewed the realm of interactive data collection methods
directed at transport user response in future situations. He distinguishes “stated response”
methods from “stated preference” methods and develops a taxonomy of the former which
subsumes the latter. The taxonomy is based on the degree to which both constraints and
behavioral outcomes are either provided by researchers or elicited from participants. Traditional
stated preference work specifies both constraints and behavioral responses (choice sets). Other
classes of stated response techniques include “stated tolerance” (behavioral outcomes given,
constraints elicited), “stated adaptation” (behavioral outcomes elicited, constraints given) and
“stated prospect” (both behavioral outcomes and constraints elicited).

3.3.2 LANDMARK REFLEXIVE EVALUATIONS

The process of developing theories, methods and applications has spawned periodic reviews
whose aim went well beyond simply summarizing the record of progress to date. Many of these
have attempted to both describe progress and to identify areas in which progress must still be
made: particular concepts may have not withstood empirical evaluation; appropriate empirical
tools might not have yet been developed; or new concepts had only been recently revealed.

Three such reviews are Jones (1983), Pas (1990), and Jones, Koppelman and Orfeuil (1990).
Jones’ (1983) early review summarizes the main concepts of activity analysis and provides an
assessment the areas of application up to 1983. He develops a typology of six types.of potential
and actual applications: problem recognition and policy generation, data collection, data analysis,
modeling, evaluation, and public participation and policy coordination. He concludes there had
generally been significant applications within the first three types, but that applications to
modeling, evaluation and public participation and policy coordination lagged. With respect to
modeling, Jones identified three areas in which activity analysis could contribute: definition of
choice sets, specification of appropriate variables and model structures, and development of new
forms of models.
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Pas (1990) wrote perhaps the most openly self-conscious reflexion on activity analysis. He
wrote

“It is important...for us to step back every once in a while...to assess what it is we are
doing, why we are doing it, and how we are doing it.” (ibid.) [Ellipses added.]

The title of his work—"Is travel demand analysis and modeling in the doldrums?”—suggests
there was a felt need to address criticisms that recent approaches, including activity analysis,
were not progressing rapidly enough toward practical travel demand models. Indeed, he
develops a linear history of the subject matter of travel demand analysis and modeling from
which the reader might infer that activity analysis was in danger of being supplanted by
“dynamic,” or longitudinal analysis. Perhaps to counter this impression, he cites Goodwin
(1983) who states “...dynamic analyses are inherent to the most rewarding development of
activity analysis.”

Pas concludes that from a researcher's perspective, travel demand analysis and modeling were
not in the doldrums based on the high level of research activity and the number of new ideas
generated. However, he does concede

“...from the point of view of transportation planning practice, it is clear that travel
forecasting models have seen little change in recent years. In particular, the
activity-based approach has seen little direct application.” (ibid.)

The review by Jones, Koppelman and Orfeuil (1990) distinguishes activity analysis from
“established procedures,” traces methodological developments ranging from data collection to
quantitative modeling, describes areas of actual and potential policy applications and provides
their perspective on an action agenda. That action agenda is directed toward the two challenges
they believe faced activity analysis in the late 1980s: first, to clarify concepts, refine methods and
simplify approaches; and second,

“...to demonstrate the practical usefulness of these approaches, with particular emphasis
on the improved ability to understand and predict travel behaviour in a manner which
enhances transportation service decision making.” (ibid.)

Their assessment of the application of activity analysis to transportation planning mirrors that of
Pas and other reviewers. Jones, Koppelman and Orfeuil endorse the conclusions presented by
Mahmassani (1988); who in turn summarized those of Kitamura (1988). In short, those
conclusions were that the contributions of activity analysis to practical planning tools was limited
and fragmentary, activity analysis itself had yet to develop an identifiable and accepted
theoretical base, and no clear methodological direction had been charted. What is clear from
these reviews at key reflexive moments in the past, is that researchers and practitioners of
activity analysis were acutely aware that their aspiration to transform transportation planning
tools remained largely unfulfilled. It remains to be seen whether the 1995 New Orleans
Conference will provide a landmark reflexive evaluation of a different kind.
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4. AN EXAMPLE OF THE THREE PROCESSES AT WORK

The three processes of scientific development and the distinction between segmentation and
integration approaches to the treatment of activity analysis and travel demand models provides a
framework for examining the overall development and application of the concepts of activity
analysis. We cite a series of reports detailing efforts to produce a particular model of activity
scheduling to show how those efforts build on processes of scientific development as they have
evolved in activity-based approaches; how scheduling models represent one more cycle in our
efforts to deepen our understanding of travel demand; and how our desire to develop
activity-based forecasting tools is linked to our aspirations for better theory.

The specific example we discuss is work on activity scheduling reported in Ettema ez. al.
(1993a,b; 1994). As a first step in classifying this work, activity scheduling models have
attempted to take what we earlier defined as an “integrated” approach: travel is treated as
endogenous to the creation of schedules of activities, schedules which when executed (possibly
with mid-schedule adjustments) produce observed activity and travel patterns.

Based on models created from both simulated data and data collected through the use of the
interactive computer experiments, Ettema et. al. conclude that their Simulation Model of Activity
Heuristics (SMASH) reacts in plausible fashion to changes in spatial and temporal conditions,
produces schedules that contain a high proportion of activities from the agenda of activities to be
scheduled, and that schedules tend to be created in order to minimize travel times. Results of the
interactive data collection experiment indicate that, within the confines imposed by the program,
respondents plan in a fairly simplistic manner. Also, characteristics of activities—their priority
on the agenda (the list of all activities that are to be scheduled, if possible, within the current
scheduling process), duration, starting times, and ending times—are correlated to the scheduling
processes: addition, deletion and substitution and the differential importance of nine schedule
attributes. For example, once added to a schedule, high priority activities are less likely to be
deleted than are low priority activities. Also, activities that are rescheduled or deleted tend to
have shorter duration, earlier start times and less time pressure. Travel time minimization
appears to have less effect on the scheduling of activities that are scheduled for earlier in the day
than on activities scheduled for later in the day.

We see evidence of the processes of scientific development both in the developments in activity
analysis that lead up to of Ettema’s et. al. work and within their efforts. The behavioral models
employed in activity-based applications have moved through cycles of
induction-deduction-reflexion that lead from utility maximizing, to adjustments to maximizing
(e.g., incorporation of information costs, satisficing), to a variety of non-utility models. In a
review of activity scheduling models, Kurani and Kitamura (1996) observe that one advantage of
production systems is they can be programmed to model more than one behavior or decision
making process. Thus, production systems allow further formulation and testing of theories of
decision making.
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Ettema’s et. al. choice of a production system is based on theoretical work spanning Simon
(1978), Hayes-Roth and Hayes-Roth (1979), Simon (1990), and Girling ez. al. (1993). The
interactive data collection revealed a simplified scheduling process. Schedules were built almost
solely through additions to the current schedule. Very few deletions or substitutions were made
during the scheduling experiments; only after a complete schedule had been articulated were
adjustments made to the schedule. This is contrast to the findings of Hayes-Roth and Hayes-Roth
(1979) whose work showed a great deal of incremental plan changes. Thus, while building on
previous theoretical developments, the divergence of results regarding how activity schedules are
constructed between Ettema et. al. and the Hayes-Roths suggests a need for continued reflexion,
development and testing.

As one example of developments in empirical methods, we refer to our prior discussion of the
changes in the treatment of activity duration models, from disaggregate choice models to hazard
models (Section 2). Ettema et. al. (1995) participated in this development themselves, writing on
the application of hazard models to activity choice, timing, sequencing and duration.

S. CONCLUSIONS: PORTENTS OF ACTIVITY-BASED TRAVEL FORECASTING

In writing this interpretation of the development of activity analysis, we have argued that the
course of activity analysis can best be traced through three processes: conceptual and theoretical
development, empirical testing and application, and the self aware monitoring of the progress
and interaction of the first two. This process orientation puts activity-based approaches into a
more cyclical, and less linear, historical perspective. We believe this cyclical perspective
addresses concerns with the description of the development of activity analysis as linear
sequences of distinct epochs raised by Gerardin (1990) in his response to Pas’ (1990) review. In
particular, Gerardin (1990) argues that “Far from forming a sedimentary evolution, the thirty-five
years of research development described by Eric Pas should enrich themselves mutually.” He
concludes that, “research proceeds in such a way that progress is not linear, but by stop and
start.”

While we agree with Pas’ descriptive history of activity analysis as a series of epochs of distinct
emphasis on different problems, we have presented a process oriented history to explain what
drives us from one epoch to the next. In contrast to Gerardin, we would describe research as
progressing not “by stop and start,” but through cycles of induction and deduction, driven by our
own monitoring of those cycles and our ability to provide purposive and discursive elaboration
both of those cycles and of our awareness of them—or more to the point, of our awareness that
we are the purposive agents of those cycles.

In this context, the application of activity-based approaches to travel demand forecasting is not a
point in a linear history, nor a layer in a sedimentary history; it is neither a stop nor a start, but
one more turn of the wheel. In this conference, itself a reflexive exercise, we may well choose
the direction of the next cycle, the pathway we will construct toward activity-based travel
forecasting tools. In progressing along that path, we can expect to further elaborate our theories.
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One choice that will likely define the direction of that pathway is the choice between making
incremental adjustments to existing travel demand forecasting tools or developing activity
models in which travel is determined endogenously. In the short term, the incremental approach
has the attraction of having already started and of having provided some positive results—it may
represent the next turn of the wheel for activity based travel demand forecasting. The
perspective we have developed here reminds us though that we should be prepared for the cycles
to keep moving. We should be prepared for subsequent cycles, which may well involve a
wholesale reformulation of travel demand forecasting into an integrated activity-travel approach
in which travel is determined endogenously in activity participation.

Whatever the specific direction, our guess is that applications of activity-based methods will play
amajor role. And beyond that? If we were to go out on a limb, prospecting into the future and
say where the next turn after that may point us, it would have something to do with what we
might call “post-modern” models of time-use—models which better represent travelers'
propensities to favor predictability or spontaneity.

REFERENCES

Adler, T. and M. Ben-Akiva (1979) “A theoretical and empirical model of tr1p chaining
behavior.” Transportation Research B. v. 13B. pp. 243-57.

Ahrentzen, S., D.W. Levine and W. Michelson (1989) “Space, time and activity in the home: A
gender analysis.” Journal of Environmental Psychology. v. 9. pp. 89-101.

Axhausen, K.W. (1990) “A simultaneous simulation of activity chains and traffic flow.” inP.
Jones (ed.) Developments in Dynamic and Activity-Based Approaches to Travel Analysis.
Aldershot, U.K.: Gower.

Axhausen, K.W. and T. Giarling (1992) “Activity-based approaches to travel analysis:
Conceptual frameworks, models, and research problems.” Transport Reviews, v. 12. pp.
323-41.

Bhat, R.C. and F.S. Koppelman (1993) “A conceptual framework of individual activity program
generation.” Transportation Research 27A. pp. 433-46.

Brog, W. and E. Erl (1980) “Interactive measurement methods: Theoretical bases and practical
applications.” Transportation Research Record 765.

Brog, W. and E. Erl (1983) “Application of a model of individual behaviour (situational
approach) to explain household activity patterns in an urban area and to forecast behavioural
changes.” In Carpenter, S. and P.M. Jones (eds.) Recent Advances in Travel Demand.
Aldershot, UK: Gower.

Chapin, F.S. (1978) “Human time allocation in the city.” In Carlstein, T., D. Parkes and N.
Thrift (eds.) Timing Space and Spacing Time: Human Activity and Time Geography.
London: Edward Arnold Ltd.

Chapin, F.S. (1974) Human activity patterns in the city: Things people do in time and space.
London: John Wiley and Sons.

Chapin, F.S. (1965) Urban Land Use Planning. University of Illinois Press, Illinois.

72



Clarke, M. and M. Dix (1983) “Stage in lifecylce—a classificatory variable with dynamic
properties.” In Carpenter, S. and P.M. Jones (eds.) Recent Advances in Travel Demand.
Aldershot, UK: Gower.

Cullen, I1.G. (1972) “Space, time, and the disruption of behavior in cities.” Environment and
Planning. v. 4. pp. 459-70.

Damm, D. and S.R. Lerman (1981) “A theory of activity schedule behavior.” Environment and
Planning A, pp. 703-18.

Damm, D. (1983) “Theory and empirical results: a comparison of recent activity-based research.
In Carpenter, S. and P.M. Jones (eds.) Recent Advances in Travel Demand. Aldershot, UK:
Gower.

Dix, M. (1981) “Structuring our understanding of travel choices: the use of psychometric and
social-science research techniques™ in : Stopher, P.R., Meyburg, A. and Brég, W. (Eds.):
New horizons in travel-behaviour research. Lexington, MA: Lexington Books.

Ettema, D., A. Borgers and H. Timmermans (1993a) “Simulation Model of Activity Scheduling
Behavior.” Transportation Research Record 1413.

Ettema, D., A. Borgers and H. Timmermans (1993b) “Using Interactive Computer Experiments
for Investigating Activity Scheduling Behavior.” In Proceedings of the PTRC Annual
Meeting. University of Manchester, U.K. v. P336. pp. 267-83.

Ettema, D., A. Borgers and H. Timmermans (1994) “Using Interactive Computer Experiments
for Identifying Activity Scheduling Heuristics.” Paper presented at the Seventh International
Conference on Travel Behaviour. Valle Nevada, Santiago, Chile. June 13-16.

Ettema, D., A. Borgers and H. Timmermans (1995) “Competing risk hazard model of activity
choice, timing, sequencing and duration.” Transportation Research Record 1493. pp. 101-9.

Ferguson, E. (1990) “The influence of household composition on residential location and
journey to work in the United States.” Paper submitted to the 69th Annual Meeting of the
Transportation Research Board. Paper 890769. January 7-11.

Fried M., J. Havens and M. Thall (1977) Travel Behaviour—A Synthesised Theory. Final
Report to the National Cooperative Highway Research Program. Washington D.C.

Girling, T., K. Brénnis, J. Garvill, R.G. Golledge, S. Opal, E. Holm and E. Lindberg (1989)
“Household activity scheduling.” In, Transport policy, management and technology towards
2001: Selected proceedings of the fifth world conference on transport research. v. IV pp.
235-48. Ventura, CA: Western Periodicals.

Girling. T., M. Kwan and R.G. Golledge (1993) Computation-process modeling of household
activity scheduling. University of Goteborg: Goteborg, Sweden.

Gerardin, B. (1990) “A response.” Response to Pas, E., “Is Travel demand analysis and
modelling in the doldrums?” Both, in P. Jones (ed.) Developments in Dynamic and
Activity-Based Approaches to Travel Analysis. Aldershot, U.K.: Gower.

Giddens, A.(1984) the Constitution of Society: Outline of the Theory of Structuration. Berkeley:
University of California Press.

Golob, T. (1990) “Structural equation modelling of travel choice dynamics.” In P. Jones (ed.)
Developments in Dynamic and Activity-Based Approaches to Travel Analysis. Aldershot,
U.K.: Gower.

Greico, M., L. Pickup and R. Whipp (1989) “Gender, transport and employment: The impact of
travel constraints.” Oxford Studies in Transport. Aldershot, U.K.: Avebury.

73



Higerstrand, T. (1970) “What about People in Regional Science?” Papers of the Regional
Science Association, v. 24 pp. 7-21.

Hanson, P. (1977) “The activity patterns of elderly households.” Geografiska Annaler, Series B.
V. 59B. n.2 pp. 109-24.

Hanson, S. and Burnett, P. (1981) “Understanding complex travel behaviour: measurement
issues” in : Stopher, P.R., Meyburg, A. and Brog, W. (Eds.): New Horizons in
Travel-Behaviour Research. Lexington, MA: Lexington Books.

Hanson, S. and P. Hanson (1980) “Gender and urban activity patterns in Uppsala, Sweden.”
Geographical Review, CV. 70. n. 3. pp. 291-99.

Hayes-Roth, B. and F. Hayes-Roth (1979) “A Cognitive model of planning.” Cognitive Science.
v. 3. pp. 275-311.

Hayes-Roth, B., F. Hayes-Roth, S. Rosenschein and S. Cammarata, (1979) “Modeling planning
as an incremental, opportunistic process.” In the Proceedings of the Sixth International Joint
Conference on Artificial Intelligence: Tokyo. V.1 pp. 375-83.

Heath, L. and R.S. Tindale (1994) “Heuristics and biases in applied settings: An introduction.”
In Heath, L., et. al. Applications of Heuristics and Biases to Social Issues. New York:
Plenum Press.

Heggie, 1.G. and P.M. Jones (1978) “Defining domains for models of travel demand.”
Transportation, v. 7. pp. 119-25.

Hensher, D.A and F.L. Mannering (1994) “Hazard-Based Duration Models and their
Application to Transport Analysis.” Transport Reviews, v. 14. pp. 63-82.

Horton, F.E. and D.R. Reynolds (1971) “Effects of Urban Spatial Structure on Individual
Behavior.” Economic Geography. v. 47:1. pp. 36-48.

Huff, J.0. and S. Hanson (1986) “Repetition and variability in urban travel.” Geographical
Analysis. v. 14:2. pp. 97-114.

Jones, P.M. (1983) “The practical application of activity-based approaches in transport planning:
An assessment.” In Carpenter,. S.M. and P.M. Jones (eds.) Recent Advances in Travel
Demand Analysis. Aldershot, U.K.: Gower.

Jones, P. (1995) “Contributions of activity-based approaches to transport policy analysis.”
Paper presented at the Workshop on Activity Analysis, Eindhoven, The Netherlands. May
25-28.

Jones, P.M., M.C. Dix, M L. Clarke and 1.G. Heggie (1983) Understanding Travel Behaviour.
Aldershot, U.K.: Gower.

Jones, P., F. Koppelman and J.P. Orfeuil (1990) “Activity analysis: State-of-the-art and future
directions.” in P. Jones (ed.) Developments in Dynamic and Activity-Based Approaches to
Travel Analysis. Aldershot, U.K.: Gower. '

Kawakami, S. and T. Isobe (1986) “A method of activity estimation for travel demand
analysis.” Presented at the 4th world Conference on Transport Research. Vancouver,
Canada.

Kiker, B.F. and Y.C. Ng (1990) “A simultaneous equation model of spousal time allocation.”
Social Science Research. v. 19. pp. 132-52.

Kim, H., S. S66t and A. Sen (1994) “Shopping trip chains: current patterns and changes since
1970.” Presented at the 73rd Annual Meeting of the Transportation Research Board.
Washington, D.C. January 9-13.

74



1. generate a uniform random number u,, on the range [0,1]. Given u,;, determine X,
from the distribution P(X,=x;);

2. generate a uniform random number u,,. Given x;; and u,,, determine x,, from the
distribution P(X,=x,,|x,); and

3. generate a uniform random number uy,. Given X,, and us, determine x;, from the
distribution P(X;=X3y/Xon)-

This process is then repeated until all households, each with a specific set of attributes, have been
generated.”? This procedure is conceptually straightforward, easy to implement, and has been
used in several models, including Mackett [1985, 1990] and Miller, ez. al. [1987].

As Wilson and Pownall note, this process implies a causal structure in terms of the order in
which the conditional probabilities are computed (i.e., in the assumptions concerning which
attributes are conditional upon which others). In practical applications it is not always clear to
what extent this conditioning is guided by theoretical considerations as opposed to the
availability of a given set of cross tabulations. Alternatively, sufficient redundancy often exists
within available census tables that “multiple paths” through these tables may exist, leaving it to
the modeler to determine which path is “best” for computing the joint attribute sets (e.g., perhaps
one has two-way tabulations of X, by X; as well as the other two-way tabulations previously
assumed; in such a case, which order of conditioning is best?). :

More fundamentally, this procedure ignores the potential for significant multi-way correlations
among the variables, except for the very limited two-way correlations permitted within the
arbitrarily assumed conditional probability structure. This is a potentially serious problem. A
recently proposed procedure by Beckman, ez. al. [1995] for use in TRANSIMS, however,
directly addresses this issue.

The TRANSIMS procedure also starts with aggregate census tabulations for each census tract. In
addition, however, it utilizes Public Use Microdata Sample (PUMS) files which consist of 5%
representative samples of “almost complete” census records for collections of census tracts.
Adding up the records in a PUMS provides an estimate of the full multi-way distribution across
all attributes for the collection of census tracts. If one assumes that each census tract has the
same correlation structure as its associated PUMS, then the PUMS multi-way distribution
provides important additional information to the synthesis process. Skipping over a number of
important details, primary steps in the TRANSIMS procedure are:

12 Wilson and Pownall proposed this algorithm for the case of generating a small sample. In this
case “sampling with replacement” (as occurs in the algorithm outlined) is acceptable. If an entire
population set is to be generated, then the algorithm shown must be altered so that it involves
“sampling without replacement”. That is, after each household is drawn, the aggregate
household distributions should be modified to reflect the fact that this household has been
removed from the distribution, thereby altering slightly the probability distributions for
subsequent households.
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may be so large and/or sufficiently complex to generate that it might be “just as easy” to work
with the entire population.

In trying to build a case for population-based microsimulations, one certainly cannot ignore the
computational implications (in terms of both processing time, memory and data storage
requirements) of such an approach. This issue is returned to in Section 6. For the moment, the
points to note are:

1. the conceptual case for population-based microsimulation does exist, in at least some
applications;

2. computing capabilities and costs are continuously improving; and

3. several population-based models are currently under development, the most notable,
of course, being the TRANSIMS model [Barrett, et. al., 1995].

The synthesis and updating methods discussed in the following sub-sections do not depend in
any significant conceptual way on whether they are operating on a sample or the entire
population. For simplicity of discussion, however, the presentations in these sections assume
that it is a disaggregated representation of the entire population which is either being synthesized
or updated. .

4.1  Population Synthesis

All population synthesis methods start with the basic assumption that reliable aggregate
information concerning the base year population is available, generally from census data. These
data typically come in the form of one-, two- or possibly multi-way tables, as illustrated in
Figure 4. Collectively, these tables define the marginal distributions of each attribute of the
population of interest (age, sex, income, household size, etc.). In addition any two-way or higher
cross tabulations provide information concerning the joint distribution of the variables involved.
The full multi-way distribution of the population across the entire set of attributes, however, is
not known. The synthesis task, as shown in Figure 4, is to generate a list of individual
“population units” (in the case of Figure 4, households) which is statistically consistent with the
available aggregate data.

All synthesis procedures developed to date use some form of Monte Carlo simulation to draw a
“realization” of the disaggregate population from the aggregate data. At least two general
procedures for doing this currently exist. The first appears to have been originally proposed by
Wilson and Pownall [1976]. In this method, the marginal and two-way aggregate distributions
for a given zone (or census tract) are used sequentially to construct the specific attribute values
for a given person (or household, etc.) living in this zone. For example, assume that we are
synthesizing households with three attributes, X, X, and X,. Also assume that we have the
marginal distribution for X, (which defines the marginal probabilities P(X,=x,) for the various
valid values x, for this attribute. We also have the joint distributions for X, and X, and for X,
and X; (which can be used to define the conditional probabilities P(X,=x,}x,) and P(X;=x;x,).
An algorithm for generating specific values (X,;, X,p, X3,) for household h is then:
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and Kitamura [1992], for example, used sample households from the Dutch Mobility Panel in
their microsimulation model of Dutch household demographics and mobility (MIDAS --
Microanalytic Integrated Demographic Accounting System). Mackett [1985, 1990], as another
example, used a 1% sample of households synthesized from more aggregate data in his housing
market microsimulation model (MASTER -- Micro-Analytical Simulation of Transport,
Employment and Residence).

Situations exist, however, in which it may be useful or even necessary to work with the entire
population of actors within the microsimulation, rather than a representative sample. At least
two major reasons exist for why one might prefer to work at the population level rather than with
a sample.

First, situations exist in which computing population totals based on weighted sample results can
be difficult to do properly.!! Consider, for example, the problem of simulating residential
mobility. Assume that one is working with a 5% sample of households. Then, on average, each
household in the sample will carry a “weight” of 20 in terms of its contribution to the calculation
of population totals. If it is determined within the simulation that a given sample household will
move from its current zone of residence i to another zone j, does this imply that 20 identical
households make the same move? The answer is, probably not. More complex weighting
schemes can undoubtedly be devised, but it may prove to be conceptually simpler, more accurate
and perhaps even computationally more efficient to deal directly with the residential mobility
decisions of every household and thereby avoid the weighting problem entirely.

All sample-based models inherently represent a form of aggregation in that each observation in
the sample “stands for” or “represents” n actual population members (where, as illustrated above,
1/n is the average sample rate). These n population members will possess at least some
heterogeneity and hence variability in behavior. In many applications (microsimulation or
otherwise) this “aggregation problem” is negligible, and the efficiency in working with a (small)
sample of actors rather than the entire population is obvious. In many other applications, such as
the one described above, however, use of a sample may introduce aggregation bias into the
forecast unless considerable care (and associated additional computational effort) is taken. In
such cases, the relative advantages of the two approaches are far less clear.

Second, as one moves from short-run, small-scale, problem-specific applications (the domain of
most activity-based simulation models to date) to longer-run, larger-scale, “general purpose”
applications (e.g., testing a wide range of policies within a regional planning context --
presumably an eventual goal of at least some activity-based modeling efforts), the definition of
what constitutes a “representative” sample becomes more ambiguous. A sample which is well
suited to one policy test or application may not be suitable for another. This is particularly the
case when one requires adequate representation spatially (typically by place of residence and
place of work) as well as socio-economically. In such cases, a “sufficiently generalized” sample

1 As Mackett [1990] observes, these often involve market simulations in which demand-supply
interactions are difficult to deal with on a sample basis.
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activity/travel patterns by an activity-based model as a result of the occurrence within the
simulation of certain combinations of household needs, constraints, etc.

The importance of emergent behavior within travel demand forecasting is at least two-fold. First,
it offers the potential for the development of parsimonious models in the sense that relatively
simple (but fundamental) rules of behavior can generate very complex behavior. Second, while
all models are to at least some degree “captive” to past behavior through use of historical data to
estimate model parameters, the potential for emergent behavior increases the likelihood of the
model generating unanticipated outcomes, and hence for “departures from the trend” to occur.

Finally, it may well be the case that microsimulation models will ultimately prove easier to
explain or to “sell” to decision-makers relative to more aggregate models. Since microsimulation
‘models are formulated at the level of individual actors (workers, home-owners, parents, etc.),
relatively clear and simple “stories” can be told concerning what the model is trying to
accomplish (e.g., the model estimates the out-of-home activities which a given household will
undertake on a typical weekday, and when and where these activities will occur) to which lay
people can readily relate. The technical details of the model's implementation typically will be
very complex, but the fundamental conceptual design is, in most cases, surprisingly simple to
convey to others. :

4. POPULATION SYNTHESIS AND UPDATING

Microsimulation models by definition operate on a set of individual actors whose combined
simulated behavior define the system state over time. As discussed in Section 2, in short-run
forecasting applications, a representative sample may often exist which can define the set of
actors whose behavior is to be simulated (Figure 1). In medium- and long-term forecasting
applications, however, even if such a sample exists for the base year of the simulation, this
sample can not generally be assumed to remain representative over the forecast time period. As
discussed in Sections 2 and 3, in such cases the microsimulation model must be extended to
include methods for updating the attributes of the set of actors so that they continue to be
representative at each point of time within the simulation (Figure 2). In addition, in many
applications (particularly larger-scale, “general purpose” regional modeling applications), the
base year sample of actors either may not be available or may not be suitable for the task at hand.
In such cases, the microsimulation model must also include a procedure for synthesizing a
suitable base year set of actors as input to the dynamic behavioral simulation portion of the
model (Figure 3). Each of these two processes — synthesis and updating — are discussed in the
following two subsections.

Before discussing synthesis and updating methods, however, one other important model design
issue needs to be addressed. The discussion to this point in the paper has assumed that the set of
actors being simulated is a sample drawn in an appropriate way from the overall population.
This is, indeed, the case in most of the microsimulation models developed to date, including the
relatively few medium- to longer-term forecasting models reported in the literature, and
regardless of whether the base sample is obtained through survey or synthesis methods. Goulias

——
I
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members. Further assume that there are 1000 traffic zones, three auto ownership levels (e.g., 0,
1, 2+) and five household size categories (e.g., 1, 2, 3, 4, 5+). To save this information in matrix
format would require a four-dimensional matrix with a total of 1000x1000x3x5 = 15x10° data
items. Also note that a large number of the cells in this matrix will have the value zero, either
because they are infeasible (or at least extremely unlikely; e.g., 2+ autos in a one-person
household) or because one simply does not observe non-zero values for many cells (as will be the
case for many origin-destination (O-D) pairs).

In a list-based approach, one record is created for each worker, with each record containing the
worker's residence zone, employment zone, number of household autos and household size.
Thus, four data storage locations are required per worker, meaning that as long as there are less
than (15x10%)+4 = 3.75x10® workers in this particular urban area the list-based approach will
require less memory (or disk space) than the matrix-based approach to store the same
information. Obviously, as the number of worker attributes which need to be stored increases,
the relative superiority of the list-based approach increases.

The advantages of list-based data structures for large-scale spatial applications have been
recognized for at least twenty years.” “Aggregate” urban simulation models such as NBER® and
CAM?, both developed in the 1970's used list-based data structures.!® The key point to be made
here with respect to microsimulation is that once one begins to think in list-based terms, the
conceptual leap to microsimulation model designs is a relatively small one. Or, turning it
around, if one takes a microsimulation approach to model design, efficient list-based data
structures quickly emerge as the “natural” way for storing information.

Whether microsimulation possesses other inherent computational advantages relative to more
aggregate methods is less clear. Certainly one can advance the proposition that by working at the
micro level of the individual decision-maker, relatively simple, clear and computationally
efficient models of process can generally be developed. Whether this efficiency in computing
each actor's activities translates into overall computation time savings relative to other
approaches given the large number of actors being simulated remains to be seen.

A fourth argument in favor of microsimulation is that it raises the possibility of emergent
behavior, that is of predicting outcomes which are not “hard wired” into the model. Simple
examples of emergent behavior of relevance to this discussion might include the generation of
single-parent households by a demographic simulator as a result of more fundamental processes
dealing with fertility and household formation and dissolution, or the prediction of unexpected

7 See, for example, Wilson and Pownall [1976].
8 Ingram, G.K., et. al. [1972].
° Birch, et. al. [1974].

10 Conversely, many current commercial travel demand modeling software packages require one
to work within a matrix-based data structures -- a restriction which can become more and more
inconvenient not to mention computationally burdensome, as one attempts to implement more
“behaviorally oriented” procedures within them.
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3. WHY MICROSIMULATE?

As briefly discussed in the previous section, a primary motivation for adopting a microsimulation
modeling approach is that it may well be the best (and in some cases perhaps the only) way to
generate the detailed inputs required by disaggregate models. The strength of the disaggregate
modeling approach is in being able to fix decision-makers within explicit choice contexts with
respect to:

1. the salient characteristics of the actors involved;

2. the salient characteristics of the choice context (in terms of the options involved, the
constraints faced by the actors, etc.) and

3." any context-specific rules of behavior which may apply.

This inherent strength of the disaggregate approach is clearly compromised if one cannot provide
adequately detailed inputs to the model. Such compromises occur in at least two forms. One
involves using overly aggregate forecast inputs, resulting in likely aggregation biases in the
forecasts. The other involves developing more aggregate models in the first place so as to reduce
the need for disaggregate forecast input data, thereby building the aggregation bias into the
model itself. I believe that a strong case can be made that a primary reason for the relatively
slow diffusion of disaggregate modeling methods into travel demand forecasting practice is due
to the difficulty practitioners have in generating the disaggregate forecast inputs required by
these methods.®> As described in the previous section, microsimulation in principle eliminates
this problem by explicitly generating the detailed inputs required for each actor being simulated.

A second driving force for using microsimulation relates to the outputs required from the
activity/travel behavior model. Many emerging road network assignment procedures are
themselves microsimulation-based (TRANSIMS*, DYNASMART?, INTEGRATIONS, etc.) and
hence require quite micro-level inputs from the travel forecasting model.

A third point is that, despite the obviously large computational requirements of a large
microsimulation model, it is quite possible that microsimulation will prove to be a
computationally efficient method for dealing with large-scale forecasting problems. It is
certainly the case that a “micro” list-based approach to storing large spatial databases is far more
efficient than “aggregate” matrix-based approaches. To illustrate this, consider a very simple
example in which one might want to keep track of the number of workers by their place of
residence, place of work, number of household automobiles and total number of household

3 The only significant disaggregate model used in operational settings today is the disaggregate
logit mode choice model. Even in this instance, the number of explanatory socio-economic
variables used in the models tends to be relatively limited, presumably due to the input
forecasting problem.

4 Barrett, et. al. [1995]
> Mahmassani, et. al. [1994] and Hu and Mahmassani [1995].
¢ Van Aerde and Yager [1988a, 1988b].
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the model. The majority of activity-based microsimulation models developed to date basically
fall into this category of short-run, sample enumeration-based models.

Sample enumeration is a very efficient and effective forecasting method providing:

1. arepresentative sample is available;
one is undertaking a short-run forecast (so that the sample can be assumed to remain
representative over the time frame of the forecast); and

3. the sample is appropriate for testing the policy of interest (i.e., the policy applies in a
useful way to the sample in question).

Many forecasting situations, however, violate one or more of these conditions. Perhaps most
commonly, one is often interested in forecasting over medium to long time periods, during which
time the available sample will clearly become unrepresentative (people will age and even die;
workers will change jobs and/or residential locations; new workers with different combinations
of attributes will join the labor force; etc.).” The question then becomes how to properly “update”
the sample in order to maintain its representativeness. In other cases, the sample may not be
adequate to test a given policy (e.g., it contains too few observations of a particularly important
sub-population for the given policy test). If this is the case, how does one “extend” the sample so
that a statistically reliable test of the policy can be performed? Finally, their may be cases in
which a suitable sample simply does not exist (e.g., perhaps the model has been transferred from
another urban area). In such a case, how does one “generate” or synthesize a representative
sample?

In all of these cases, microsimulation provides a means of overcoming the limitations of the -
available sample. In the case of the sample becoming less and less representative over time,
Figure 2 presents a simple microsimulation framework in which the sample is explicitly updated
over time. The behavior predicted at each point in time is then based on a representative sample
for that point in time.

If the original sample is either inadequate or missing altogether, then, as shown in Figure 3, an
additional step must be inserted into the model, involving synthesizing a representative sample
from other available (typically more aggregate) data such as census data.

The remainder of this paper provides more detailed discussion of issues and methods associated
with Figures 2 and 3. The final point to note at this stage of the discussion is that these figures
assume that the disaggregate behavioral model is itself a dynamic one which must be stepped
through time (and hence its inclusion within the time loop). Many current activity-based models
are fairly static in nature (or incorporate very short-run dynamics, as discussed in Footnote 2). In
such cases, the behavioral model can be removed from the time loop and executed only once,
using the desired future year sample which has been estimated through the microsimulation
procedure. In order to keep the discussion as simple as possible, however, as well as to
emphasize what I believe is the need for explicitly dynamic models of urban processes, the “fully
dynamic” representation of the process as contained in Figures 2 and 3 is generally used as the
basis for discussion throughout the rest of the paper.

154



The prefix “micro” simply indicates that the simulation model is formulated at the disaggregate
or micro level of individual decision-making (or other relevant) units such as individual persons,
households and vehicles. A full discussion of the relative merits of disaggregate versus more
traditional aggregate modeling methods is beyond the scope of this paper.! I believe, however, it
is fair to say that a broad consensus exists within the activity/travel demand modeling
community that disaggregate modeling methods possess considerable advantages over more
aggregate approaches (including minimization of model bias, maximization of model statistical
efficiency, improved policy sensitivity, and improved model transferability -- and hence usability
within forecasting applications), and that they will continue to be the preferred modeling
approach for the foreseeable future. With respect to microsimulation, the relevant question is to
what extent does microsimulation represent a feasible and useful mechanism for using
disaggregate models within various forecasting applications. )

To begin to explore the way in which microsimulation can be used to apply an activity-based
model in a forecasting context, first consider the well known short-run policy
analysis/forecasting procedure known as sample enumeration. In this procedure, a disaggregate
behavioral model of some form has been developed (say, for sake of illustration, an activity-
based model which predicts the number of out-of-home activities in which a worker will
participate either before or after work, along with the location, duration and trip chaining
implications associated with these activities). A representative sample of decision-makers (in
this case workers) typically exists, since such a sample is generally required for model
development. This sample defines all relevant inputs to the model with respect to the attributes
of all the individuals in the sample. The short-run impact of various policies which might be
expected to affect activity scheduling and trip chaining can then be tested by “implementing” a
given policy, and then using the model to compute the response of each individual to this policy
(where, in this case, the response may involve some combination of changes in the number,
timing, duration and/or location of out-of-home activities). Summing up the responses of the
individuals provides an unbiased estimate of the aggregate “system” response to the policy in
question.

Figure 1 very simply summarizes this procedure. This figure can be taken as a very generic
representation of a microsimulation process for the case of a short-run forecast, in which all
model inputs except those relating to the policy tests of interest are fixed, and hence all that
needs to be simulated are the behavioral responses of the sampled decision-makers to the given
policy stimuli. Thus, in such cases, “sample enumeration” and “microsimulation” are essentially
synonymous, and use of the latter term simply emphasizes the disaggregate, dynamic? nature of

! For elegant and concise discussions of the rationale for disaggregate models see, among others,
Mackett [1990] and Goulias and Kitamura [1992, 1996].

2 In such cases, the dynamics involved are usually quite short-run (e.g., activity scheduling over
the course of a day or perhaps at most a week; short-run dynamic adaption to a new set of
constraints/opportunities; etc.), particularly relative to the much longer-term demographic and
socio-economic dynamics which are discussed immediately below.
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2. WHAT IS MICROSIMULATION?

While many current modeling efforts are microsimulation based, the term itself is rarely defined.
Simulation generally refers to an approach to modeling systems which possess the following
two key characteristics.

1. The system is a dynamic one, whose behavior must be explicitly modeled over time.

2. The system's behavior is complex. In addition to the dynamic nature of the system
(which generally in itself introduces complexity) this complexity typically has many
possible sources, including:

(a) complex decision rules for the individual actors within the system;
‘(b) many different types of actors interacting in complex ways;

(c) system processes which are path dependent (i.e., the future system state depends both
on the current system state and explicitly on how the system evolves from this current
state over time); :

(d) the system is generally an “open” one in which exogenous “forces” operate on the
system over time, thereby affecting the internal behavior of the system; and/or

(e) significant probabilistic elements (uncertainties) exist in the system, with respect to
random variations in exogenous inputs to the system and/or the stochastic nature of
endogenous processes at work within the system.

Note that in speaking of complexity, we are not merely referring to the difficulty in
dealing with very large models with large datasets defined over many attributes for
hundreds if not thousands of zones. Rather, we are referring to the more fundamental
notion of the difficulty in estimating likely future system states given the inherently
complex nature of the system's behavioral processes.

Given the system's complexity, closed-form analytical representations of the system are generally
not possible, in which case numerical, computer-based algorithms are the only feasible method
for generating estimates of future system states. Similarly, given the system's path dependencies
and openness to time-varying exogenous factors, system equilibrium generally is not achieved,
hence rendering equilibrium-based models inappropriate. In the absence of explicit equilibrium
conditions, the future state of the system again generally can only be estimated by explicitly
tracing the evolutionary path of the system over time, beginning with current known conditions.
Such numerical, computer-based models which trace a system's evolution over time are what we
generally refer to as simulation models.

Note that conventional four-stage travel demand models most clearly are not simulation models
under this definition. Conventional four-stage models are static equilibrium models which
predict a path-independent future year end state without concern for either the initial (current)
system state or the path traveled by the system from the current to the future year state. Thus in
adopting a simulation approach to modeling activity and travel behavior, one is explicitly
rejecting the conventional static equilibrium view of urban systems in favor of a dynamic
representation of such systems -- a very significant decision, both conceptually and practically.
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ABSTRACT

This paper provides an overview of the state of the art of microsimulation modeling applied to
activity-based travel forecasting. The paper defines what is meant by microsimulation and
discusses why microsimulation might be a preferred approach to activity-based forecasting in
many applications. The issue of synthesizing and updating characteristics of the population
being simulated is addressed in some detail. Examples of various types of microsimulation
models which have been developed to date are provided, including microsimulation models of
auto ownership, residential mobility, route choice and network performance, as well as activity-
based travel forecasting models per se. The paper concludes with a discussion of research and
development issues associated with the continuing development of operational microsimulation
models. These include: further evaluation of population synthesizing and updating methods;
determination of appropriate levels of model disaggregation; establishing appropriate linkages
between model components; examination of the statistical properties of microsimulation models;
and demonstration of the computational feasibility of these very computer-intensive modeling
systems.

1. INTRODUCTION

The purpose of this paper is to provide an overview of microsimulation concepts and methods
which are applicable to activity-based travel forecasting.

Including this very brief introductory section, the paper is divided into six sections. Section 2
defines the term microsimulation. Section 3 discusses the reasons why microsimulation may
prove useful or even necessary for at least some types of activity-based travel forecasting
applications. Section 4 discusses a key step in the microsimulation process -- synthesizing
and/or updating the attributes of the population or sample of individuals whose behavior is being
simulated. Section 5 then briefly presents several microsimulation models drawn from a range of
applications, including activity-based travel forecasting. Finally, Section 6 discusses some of the
research and development issues and directions associated with improving the operational
applicability of microsimulation methods.
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tool for transportation policy analysis. As noted earlier, efforts are ongoing currently on several
fronts to expand the scope of AMOS by incorporating: vehicle transaction and utilization
behavior, vehicle allocation, synthetic generation of households and their activity-travel patterns.
Planned research activities include the development and incorporation of models for: search
termination, activity engagement, time allocation, inter-person interaction, and multi-day
behavior.

7. CONCLUSION

This paper has offered an overview of the roles and advantages of the activity-based approach in
travel demand forecasting, and discussed requirements for demand forecasting models in current
transportation planning contexts. Application examples are presented with two classes of
activity-based model systems: more macroscopic structural equations model systems, and micro-
simulation model systems. These model systems are in their early stages of development and the
examples presented are limited in their scopes. The results presented in this paper have,
nevertheless, demonstrated that activity-based model systems are practical tools for policy
analysis that overcome the weaknesses of conventional models. The results offer strong support
for the development and implementation of full-scale model systems.
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be simply due to the small sample used in the exercise. It is conceivable that the commuters in
the sample had very limited alternative commute options and were able to respond within very
narrow ranges to whatever TDM scenarios being implemented. Whether this observation can be
generalized or not needs to be determined in the future by the analysis of full data set.

Table 10
AMOS Simulation Results: Congestion Pricing (TDM #5)
Total AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 43.0% 64.4% 35.6% 36.5%

Non-Work 57.0% 35.6% 64.4% 63.5%
TRAVEL MODE

Auto - Driver 50.2% 56.3% 51.9% 39.7%

Auto - Passenger 17.0% 10.3% 18.3% 22.2%

Other ' ‘ - 32.8% 33.4% 29.8% 38.1%
TRIP DURATION (min.)

Total 19.0 23.0 22.6 13.5

Auto-Driver 214 23.5 24.5 16.1

Auto-Passenger 17.3 16.4 21.8 14.5

Other 16.2 242 19.9 10.2
HOT STARTS (%) 36.8% 34.5% 36.5% 34.9%
PERCENT OF TRIPS 100% 26.9% 32.2% 39.0%
TRIPS PER PERSON 3.30

Another possibility is that the Response Option Generator has not been fine-tuned enough to be
able to detect possibly minute differences in commuters’ responses to different TDM measures.
In particular, the results suggest that a neural network be developed for each TDM measure
separately.”” The invariance in simulation results across the TDM scenarios may also be due to
the limitations of the prototype used for the analysis. For example, destination choice has not
been implemented in the prototype. In addition, the simplistic evaluation and acceptance rules
adopted in the prototype may have resulted in premature search termination for each commuter,
possibly leading to the acceptance of the baseline patterns with a higher probability than it should
receive.

This exercise nonetheless has demonstrated that a micro-simulation model system of daily travel
behavior, which adheres to the principles of the activity-based approach, is not only feasible but
also is capable of providing a practical tool for policy analysis. The implementation of the
AMOS prototype in the Washington, D.C., metropolitan area utilizes the data base maintained by
the MPO of the area. The medium scale survey (about 650 respondents) used in this study can
be modified to entertain a wide range of TDM measures, making AMOS a flexible and realistic

'7 In the prototype used in this study, the neural network is designed to be able to handle all TDM
scenarios examined.
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The overall average trip duration (in min.) shows only small changes between the two cases.
Importantly, however, the mean “other” trip duration increased from 13.6 min. to 18.4 min. This
suggests that long-distance commuters tended to remain auto commuters while shorter distance
travelers adopted other options. The distribution of trips across morning peak, afternoon peak
and off-peak shows only minor changes. The fraction of morning peak trips decreased slightly
from 34.9% to 34.5%, while that of afternoon peak trips increased from 35.9% to 37.4%. The
average number of trips per person increased slightly from 3.21 to 3.31. This reflects activity re-
linking as a result of a commute mode change, which resulted in more trips.

Table 9
AMOS Simulation Results: Parking Pricing (TDM #1)
Total AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 43.2% 63.2% 35.5% 35.4%

Non-Work 56.8% 36.8% 64.5% 64.6%
TRAVEL MODE '

Auto - Driver 47.5% 57.5% 48.6% 40.8%

Auto - Passenger 16.4% 10.3% 18.7% 23.9%

Other . 36.1% 32.2% 32.7% 35.3%
TRIP DURATION (min.) '

Total 19.4 21.6 22.8 13.4

Auto-Driver 21.2 23.6 24.8 153

Auto-Passenger 16.5 16.4 214 14.2

Other 18.4 19.7 20.7 10.5
HOT STARTS (%) 37.4% 34.5% 37.4% 39.2%
PERCENT OF TRIPS 100% 26.9% 33.0% 40.1%
TRIPS PER PERSON 3.31

Congestion Pricing (TDM #5): The results with congestion pricing at a level of $0.50 per mile
with 30% reduction in travel time are summarized in Table 10. The fraction of auto trips, 50.2%,
is higher with this TDM than with parking pricing (47.5%), but is lower than the baseline result
(54.0%). Notable is the result that the reduction from the baseline in driver trips in PM peak is
much smaller than that in the morning peak. Other than mode shares, the results of this TDM are

very similar to those of TDM #1.

The exercise here has demonstrated that AMOS is capable of producing travel forecasts by
simulating individuals’ daily travel patterns. It has also shown that the TDM measures examined
in the study do have certain impacts on travel demand. From model development viewpoints,
results are very encouraging as they indicate activity-based models can be implemented in a
metropolitan region and can produce forecasts for policy analysis.

The results may seem less encouraging from transportation policy viewpoints, however, because
the effects of the TDM scenarios examined here are small, and because there are only a few
discernible differences among the impacts of the respective TDM scenarios. These results may
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The results of the analysis are summarized for TDM #1 and TDM #5 in Tables 8 through 10.
The reader is cautioned that the number of sample households from the MWCOG data base that
were available to the study was unfortunately very small and the results presented here are
subject to sampling errors.'® It must also be noted that this exercise has been made for
illustrative purposes and the size of the sample used here, and some of the simplifying
assumptions existent in the prototype, warrant neither generalization of the results obtained nor
general assessment of the relative effectiveness of the TDM scenarios examined here.

Table 8
Baseline Travel Characteristics
: Total AM Peak PM Peak Off-Peak

TRIP PURPOSE

Work 42.2% 64.0% 31.1% 36.6%

Non-Work 57.8% 36.0% 68.9% 63.4%
TRAVEL MODE -

Auto - Driver 54.0% 65.1% 54.7% 45.5%

Auto - Passenger 18.4% 10.5% 18.9% 23.6%

Other 27.6% 24.4% 26.4% 30.9%
TRIP DURATION (min.) ‘ ‘

Total ‘ 18.5 21.7 22.0 13.4

Auto-Driver 21.6 24.5 24.9 15.2

Aufo-Passenger 17.0 16.4 214 14.2

Other 13.6 16.4 16.2 10.1
HOT STARTS (%) 37.7% 34.9% 35.9% 37.8%
PERCENT OF TRIPS 100% 27.3% 33.7% 39.0%
TRIPS PER PERSON 3.21

Baseline: The distribution of trip purposes (work vs. non-work), travel mode (auto-driver, auto-
passenger, other), mean trip duration by mode, percent of hot starts, and average number of trips
per person are summarized in Table 8 for AM peak, PM peak and off-peak periods. Slightly over
60% of the trips are work trips (including trips from work to home), with higher fractions during
the morning and afternoon peaks. Overall over three-quarters of the trips are made by auto. The
large fraction of trips by “other” mode in the afternoon peak period represents walk trips made in
this period by this sample of commuters.

Parking Pricing (TDM #1): Results of simulation runs with TDM #1, parking pricing with a
surcharge of $8 a day, are summarized in Table 9 The most notable change is in modal split.
The fraction of auto driver trips decreased from 54.0% in the baseline case to 47.5%, and auto
passenger trips from 18.4% to 16.4%. The fraction of “other” modes increased by 7.8% during
AM peak, 6.3% in the PM peak and 4.4% during off-peak periods, respectively.

' In the future the spatial and temporal resolution of micro-simulation results can be refined by
using more households, possibly synthetic households distributed over the study area.
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Results of the TDM stated-adaptation section were used to train the neural network in the
Response Option Generator. The resulting network consists of 45 input nodes, 8 output nodes,
and two hidden layers. The input nodes may be grouped as: personal and household attributes,
work schedule characteristics, commute characteristics, trip chaining characteristics, mode
characteristics, and TDM scenarios. The eight output nodes comprise: change departure time,
use transit to work, ride-share to work, ride bicycle to work, walk to work, work at home, do
nothing different, and other (long-term responses treated as doing nothing in short-term policy
analysis).

Table 7
TDM Measures Included in the AMOS Survey in
the Washington, DC, Metropolitan Area

TDM #1 | Parking Tax. Incremental parking tax at work place at
- $1 to $3 per day in suburbs
- $3 to $8 per day in D.C. and central areas
TDM #2 | Improved Bicycle/Pedestrian Facilities. Well-marked and well-lighted
bicycle paths and a secure place to park a bicycle wherever respondent went.
TDM #3 | “Synergy” Combination of TDM 1 and TDM 2
TDM #4 | Parking Charge Combined with Employer-Supplied Commuter Voucher.
“Employers provide employees with a commuter voucher while employees
must pay for a parking surcharge.

- $40 to $80 per month for both voucher and surcharge
TDM #5 | Congestion Pricing. Area-wide implementation of congestion pricing,
effective from 6:00 AM to 9:00 AM and from 4:00 PM to 7:00 PM.

- $0.15 to $0.60 per mile
. - 10% to 30% travel time savings
TDM #6 | “Synergy” Combination of TDM 4 and TDM §
*Different parameter values are assigned to respondents randomly within the range shown.

6.2.4 Simulation Results

Using the AMOS prototype described above, the effectiveness of the following TDM measures
are evaluated:

e TDM #1, parking pricing: parking surcharge of $8.00 per day,

e TDM #4, parking pricing with employer-paid voucher: parking charge of $80 per month
and a commuter voucher of $60,

e TDM #5, congestion pricing: congestion charge of $0.50 per mile, travel time reduction
by 30%, and

e TDM #6, a synergy combination of TDM #4 and TDM #5: parking charge of $80 per
month, commuter voucher of $60, and congestion charge of $0.50 per mile.

A total of 20 simulation runs were performed for each TDM measure.
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and timing of activities. Using the time utility concept, AMOS evaluates TDM measures while
considering their impacts on the entire daily activity, not just on the commute trips which these
measures often target.

Acceptance Routine compares the activity-travel patterns so far generated, and determines
whether the search should continue or one of the patterns so far generated should be adopted.
The routine represents the assumption that, based on the outcomes so far, the individual forms a
subjective distribution of utilities associated with alternative patterns; assesses the likelihood of
obtaining a better activity-travel pattern; and terminates the search when the cost of search
exceeds the expected gain of searching further. Experiments are being designed to validate this
theoretical search termination model and to estimate the parameters.

The output of the AMOS micro-simulation is modified and accepted travel patterns that represent
individuals’ responses to TDM measures.

6.2.3 AMOS Survey

A prototype of AMOS has been developed and implemented in the Washington, DC,
metropolitan area. The implementation effort adopts the Metropolitan Washington Council of
Governments (MWCOG) traffic analysis zone (TAZ) system and zone-to-zone network travel
time matrices by travel mode. Network skim data are available for: drive alone (SOV), ride-
sharing (HOV), public transit with walk access, and public transit with auto access. Travel times
by bicycle and walk are estimated by applying assumed speeds (6.5 mph and 2.5 mph,
respectively) to the centroid-to-centroid distance. The implementation effort thus utilizes as
much spatial and modal information as available from the MWCOG data base.!s

A three-phase survey, involving computer-aided telephone interviews (CATI), was conducted in
November and December of 1994 to generate a data set to calibrate AMOS components. The
survey included a time-use section which collected data on both in-home and out-of-home
activities as well as details of each trip made. Also in the survey was a set of customized stated-
response (or “stated adaptation”) questions which asked respondents how they would respond to
each TDM measure. Adult commuters who commuted at least three days a week were the target
of the survey. For further information, see RDC (1995) and Pendyala er. al. (1995).

In the survey, respondents were given a description of a TDM measure, then asked in an open-
ended format, “What would you do?” if the measure had been in fact implemented. Commute
travel time and other pertinent parameters were customized such that the hypothetical scenario
would closely represent each respondent’s commute situation. Follow-on questions were asked
to probe into details of the stated behavioral adjustment (e.g., how to drop off a child at the day-
care when public transit is used to commute). The TDM measures included in the survey are
described in Table 7.

'* Note that travel time data used are static; possible changes in network service levels due to
TDM measures are not reflected in the simulation.
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and all necessary secondary and tertiary changes are made while considering a rule-base that
represents a series of constraints and tendencies, including Hagerstrand’s coupling constraints.
Then the resulting modified pattern is evaluated against those patterns that have so far been
generated, and is accepted when a set of rules is met. AMOS thus replicates an individual’s trial-
and-error search behavior for a better travel pattern based on the paradigm of satisficing. The
structure and functioning of the model system is illustrated below by briefly describing each
model component.

Baseline Activity-Travel Pattern Analyzer inspects “base-line” travel diary data and determines
whether the diary data under consideration are complete, with all trips and pertinent information
intact. It also checks whether the sample individual and/or her travel pattern falls in the
categories targeted for analysis. Another major function it performs is to develop indicators of
‘travel pattern characteristics (e.g., there is a stop during the commute trip) that feed into the
Response Option Generator described next.

Response Option Generator is a key stochastic element of AMOS that produces response
patterns to a change in the travel environment. The input to the Generator consists of: household
and person attributes, network and land use characteristics, characteristics of the change in the
travel environment (e.g., TDM attributes), and the indicators of the baseline activity-travel
pattern characteristics prepared by the Analyzer. Given these, the Generator simulates how the
sample individual response to the TDM measure.

The central component of the Generator is a neural network. Its use draws from a branch of
cognitive science called “connectionism,” in which it is postulated that humans process
information by breaking it down into smaller elements that are inter-connected with different
levels of intensity. In other words, human thinking is a process of connecting one informational
element (e.g., a concept) to another. This idea can be depicted by a neural network, which can be
“trained” to best replicate observed connection patterns between input (in this case TDM
attributes) and output (response options).

Activity-Travel Pattern Modifier examines the baseline pattern and, if the response option from
the Generator necessitates it, performs: (i) activity re-sequencing (re-arrangement of the order in
which out-of-home stops are made), (ii) activity re-linking (re-combining of out-of-home stops
into trip chains), (iii) mode and destination assignment, and (iv) trip timing adjustment. Such
adjustments are needed primarily when a travel mode change or a departure time change implied
by the response option, makes the baseline pattern infeasible or impractical. The Modifier then
examines the feasibility of the resulting modified activity-travel pattern using a rule base.

FEvaluation Routine assigns a utility measure to the modified activity-travel pattern using
time-use utility functions (see RDC, 1993; Kitamura et. al., 1995b). The attractiveness of the
pattern produced by the Modifier is measured in terms of the utility generated by allocating time
to, and engaging in, the in-home and out-of-home activities contained in the pattern. The utility
functions have been developed using the time-use data obtained from the time-use survey
conducted as part of the implementation study. The ongoing effort includes the generalization of
the utility functions to include non-time elements such as mode attributes, monetary expenses,
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mode choice model is not differentiated by trip purpose as noted earlier. The model system does
not yet have the capability to endogenously generate fixed activities. There are many areas
where development, extension and refinement are needed. Nevertheless it can be concluded that
the study has demonstrated that activity-travel behavior in time-space prisms can be simulated
reasonably well and that travelers’ responses to changes in travel time or work schedules can be
examined using the micro-simulation model system. The PCATS model system is readily
applicable to other types of scenarios, such as changes in store hours or extended operating hours
of public transit, which are difficult to address with the conventional trip-based models that do
not incorporate the time dimension and disregard time-space constraints. An additional future
task is to incorporate into PCATS the behavioral mechanism for activity engagement. The
“utility-maximizing,” nested-logit model of activity type choice incorporated in PCATS captures
the salient tendencies associated with activity type choice; it, however, hardly captures the reason
for activity engagement. Effort is ongoing toward the development of a model of activity
engagement which represents the motivations for activity engagement and which will make
PCATS truly behavioral.

6.2 AMOS

Activity-Mobility Simulator (AMOS) is a micro-simulation model system of individuals’
adaptation behavior which predicts changes in travel behavior that will follow a change in the
travel environment. The individual’s adaptation behavior is characterized as a trial-and-error
experimentation process. The development of AMOS has been motivated by the recognition that
the traditional, trip-based, four-step procedures are incapable of incorporating TDM and other
policy measures that are now the primary focus of urban transportation planning.

A prototype of AMOS has been developed and implemented in the Washington, D.C., metro-
politan for the evaluation of selected TDM measures. AMOS is currently being implemented in
three major metropolitan areas of California. In this implementation, AMOS is being combined
with: a household vehicle transactions model which predicts the timing and type (addition,
replacement, or disposal) of vehicle transactions and the types of acquired vehicles; and a
demographic simulator which predicts the evolution of demographic and socio-economic
attributes of households. AMOS will thus serve as a long-term forecasting model. Detailed
discussions of AMOS can be found in RDC (1995), Kitamura et. al. (1993, 1995a) and Pendyala
et. al. (1995). The description of the AMOS components below draws from Kitamura ef. al.
(1995a).

6.2.1 AMOS Components

AMOS comprises five main components and a reporting routine. In a nutshell, it functions as
follows. First, how an individual may respond to a change in the travel environment caused by,
say, a TDM measure, is determined by Monte Carlo simulation with a neural network that has
been calibrated using results of a stated-response survey designed and administered for AMOS
calibration. The individual’s “base-line” travel pattern is then modified based on the response,
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tendencies are not found for the W-H-O-H pattern, however. Yet, it is cautioned that the
frequency of out-of-home activity engagement is small in the simulation results and the statistics
presented under the W-O-H and W-H-O-H patterns contain large variations.

Similar reductions in out-of-home activity engagement can be found for Scenarios 2 and 3. The

mean travel times associated with pattern W-O-H exhibit increases of less than 15 min. from the

base case, while the activity times decrease by 15 to 20 min. Much larger changes are associated
with the W-H-O-H pattern. This, however, is at least in part due to the small sample size.

This scenario analysis has demonstrated that PCATS facilitates the analysis of time-oriented
policies such as changes in work schedules while explicitly considering time-space constraints in
the analysis. PCATS also represents the repercussions of a change in the travel environment,
including induced (or suppressed) travel and changes in activity location and duration.

Table 6
Results of Scenario Simulation with a Sample Individual
After-work Travel Pattern!
W-H? W-O-H W-H-O-H Other

Base case _Frequency 84 8 7 1

Travel time? 51 122 160 -

In-home time? 369 188 208

Out-of-home time? 0 109 52
Scenario  Frequency 91 5 4 0
1

Travel time 51 114 184

In-home time 309 177 115

Out-of-home time 0 69 62
Scenario  Frequency 89 6 5 0
2

Travel time 79 135 180

In-home time 341 190 155

Out-of-home time 0 94 85
Scenario  Frequency 96 6 2 2
3

Travel time 81 136 214

In-home time 339 195 178

Out-of-home time 0 89 29

T W-H: work -~ home. W-O-H: work - other ~ home. W-H-O-H: work -~ home - other -~ home

2 In minutes. Out-of-home time excludes travel time.
3 Since static travel time is used in the simulation, there is no random element in travel time
(and therefore in in-home time) for the first travel pattern, “W-H,” where the individual

returns home immediately after work and engages in no out-of-home activity.

Yet, PCATS is still in its early stage of development; it would be more appropriate to say the
model system as presented in this study is an initial prototype. For example, the destination-
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correlation coefficients. The results point to possible deficiencies in the model components,
especially the activity type choice models. The results, nevertheless, demonstrate that the
simulation system can replicate the observation reasonably well, at least with respect to total
travel time, in-home flexible activity duration, and number of trips.

6.1.3 Scenario Analysis
PCATS is now applied to assess how changes in the travel environment affect an individual’s
activity and travel. In this analysis a sample individual is selected and his activity and travel

after work is simulated for each of the scenarios shown in Table 5.

Table §
Scenarios Used in the Simulation Analysis

Scenario Description

Base case | Work ends at 5:00 PM. A car is used to commute.
Scenario I | Work ends at 6:00 PM. A car is used to commute.
Scenario 2 | Work ends at 5:00 PM. Public transit is used to
commute.

Scenario 3 | Work ends at 5:00 PM. Car commute takes extra 30 min.

The sample individual’s profiles are as follows:

An employed male of 54 years old;

household income in the 1,500,000 to 2,000,000 yen range

has held a driver’s license for 30 years;

one vehicle available to the household;

commutes to CBD Osaka;

lives approximately 30 km to the south from Osaka along the Osaka Bay; and
has good freeway access to the Osaka CBD.

The individual is assumed to be at the work location when work ends (which is assumed to be
the ending point of a blocked period), and the next blocked period is assumed to begin at
midnight. It is thus assumed that the entire evening period, after work till midnight, is an
uncommitted block of time. Table 6 summarizes the results obtained by performing 100
simulation runs.

The frequency of the simple W-H pattern increases from 84 in the base case to 91, 89 and 90,
respectively, in the three scenarios. Quite notable in Scenario 1, where work ending time is
moved to 6:00 PM, is the substantial reduction in the out-of-home activity duration and the slight
reduction in the travel time associated with the W-O-H pattern. The in-home activity time does
not show very much change. The shortening of the after-work open period caused by the change
in work ending time has prompted the individual to engage in out-of-home activities less
frequently. When the W-O-H pattern is engaged, the activity location is closer and the activity
duration is much shorter, presumably to accommodate the tighter time constraints. These
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This model is used in PCATS to generate a destination and mode for each trip. As is the case for
activity choice, only those destination-mode pairs that are feasible in light of prism constraints
and coupling constraints (primarily for auto availability), are included in the choice set.

The duration of the activity is finally determined, given its type, location, and the mode used to
reach the activity location. The activity duration models described earlier are used here while
considering prism constraints. The maximum possible activity duration is first determined based
on the size of the prism, which is a function of the speed of travel, the location of the trip origin,
the location of the activity, and the location of the next fixed activity. Then the distribution as
given by the duration model for the activity type is truncated at the maximum, i.e., a probability
mass equaling to the probability that the activity duration will exceed that maximum is placed at
the maximum. ‘The resulting mix distribution is used to generate activity durations in the
simulation.

6.1.2 Validation

A validation analysis is conducted to determine how well the simulation system replicates
observed activity and travel patterns. In the analysis, expected values obtained from the
simulation are compared against observed values for several indicators of activity-travel patterns.
Expected values are obtained by averaging the results of 100 simulation runs performed for each
sample individual. The results of the validation study are summarized in Table 4 for 374 sample
individuals whose activity records are complete.

Table 4
Results of the Validation Study
Predicted Observed
Mean S.D. [ Mean S.D. t R?
| Total travel time 1163 7071|1279 87.1| -2.00 | 0.622
In-home flexible activity duration 3145 1529 288.7 191.0| 2.04{ 0.673
Out-of-home flexible activity duration 284 723} 396 756 -2.07| 0.329
Number of non-work destinations 0.071 061 | 031 0.58]| -542 | 0.169
Number of non-work trip chains 0.059 0.28]0.013 0.11| 2.86 -
_ 0.027
Number of trips 2.8 1.56] 338 1.79] -4.00| 0576
S.D.: standard deviation across sample individuals
t: t-statistics associated with the difference between the predicted and observed
values (not based on the standard deviations associated with “predicted” values)
R%: Pearson correlation coefficient between predicted and observed values

It can be seen from Table 4 that total travel time, in-home flexible activity duration, and number
of trips are relatively well represented by the simulation. According to the t-statistics, however,
predicted values and observed values are significantly different for all indicators (at & = 0.05). In .
particular, number of non-work destinations and number of non-work trip chains have very small
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activity type, assuming that the parameters of the distribution (the mean and a shape parameter)
is a function of personal attributes and other explanatory variables. Weibull distributions are
exclusively used in the current version of PCATS.!* The explanatory variables used in the
duration models are: person and household attributes, past activity engagement, time of day, time
availability and location type indicator. The location types used here are {home, non-home}. For
detailed descriptions of model estimation results, see can be found in Otsuka (1996).

The Activity Type Choice Model developed here has a two-tier structure, and is formulated as a
nested-logit model. In the first (upper) tier, one of the following three broad classes of activities
is chosen: in-home activity, activity at (or near) the location of the next fixed activity, and
general out-of-home activity. Exactly which alternatives can be included in the choice set is
determined considering prism constraints. In other words, the formation of choice sets in
PCATS simulation is governed in part by prism constraints. The second tier under “in-home
activity” includes: engage in out-of-home activity subsequently, and do not engage in out-of-
home activity within the current open period. If the former is the case, then the duration of the
in-home activity will be determined; and the activity choice model will be applied again with the
“in-home activity” alternative excluded from the choice set. If the latter is the case, then the
travel to the location of the next fixed activity will be simulated. Likewise, if the option of
“activity at (or near) the location of the next fixed activity” is selected in the first tier, then the
travel to the next fixed location will be simulated.

If “general out-of-home activity” is chosen, then the activity type is selected in the second tier.
Activities are classified into the following six activity types, which comprise the choice set in the
second tier: meal, social, grocery shopping, comparison shopping, hobbies and entertainment,
and sports and exercises. The explanatory variables used to model the choice of out-of-home
activity type include: personal attributes: age, sex, home-maker or not, time of day, and
probability that the activity duration fits within the open period.

The Destination and Mode Choice Model is formulated also as a nested-logit model. The first
tier concerns the choice of destination, and the second tier the conditional choice of travel mode,
given the destination. In the current version of PCATS, one model is applied to all trips; this is
restrictive and in the future models will be differentiated by trip purpose. Municipalities are used
as the unit of geographical aggregation in this study. Travel modes are classified as {public
transit, automobile, bicycle, walk}. The explanatory variables used to account for destination
choice are: zonal population, the number of commercial establishments, intra-zone destination
dummy, the possible minimum travel time to the destination zone then to the location of the next
fixed activity, and the probability that the provisional activity duration fits within the open period
given the activity is pursued at the destination zone. The explanatory variables for conditional
mode choice, given a destination are: age, sex, employment status, driver’s license holding,
household income, number of vehicles available, time of day, travel time and cost by mode, and
number of transfers, intra-zone trip dummy, and location type indicator (indicators of the
combination of the current location type and the location of the next fixed activity).

" This is not to exclude the possibility that in the future more suitable distribution functions may
be identified and used in PCATS.

P
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those pursued in an open period shall be called flexible activities.”> Given the speed of travel, the
ending time and location of a blocked period and the beginning time and location of the
subsequent blocked period, define a time-space prism in which the individual’s activity and
travel are contained. It is assumed that the individual makes activity engagement and travel
decisions at the beginning of each open period and also when an activity is completed within a
open period. It is thus assumed that activity engagement decision is made sequentially,
conditioned upon past activity engagement.

6.1.1 Outline of PCATS

PCATS is based on a sequential decomposition of the probability associated with an activity-
travel pattern, namely,

Pr[A, B, C, ...] = Pr[A]Pr[B|A]Pt[C|A, B] ....

where A, B, C, ... refer to events brought about by activity-travel decisions, e.g., leave for work
at 6:30 A.M. by car. Using this sequential decomposition rule, the multiple decisions underlying
an activity-travel pattern can be expressed by a product of probablistic elements, each associated
with an activity episode or trip. Furthermore, each of these probablistic element can be further
decomposed into conditional probabilities associated with respective aspects of activity-travel
decision, e.g., activity type, activity duration, location, and travel mode (if relevant). Now, there
are alternative sequences of decomposition that are equivalent, e.g.,

Pr[A, B, C] = Pr{A]Pr[BJA]P:[C|A, B] = Pr[B]Pt[C|B]Pt[A|B, C] = ...

Then a particular Asequence may be preferred and selected considering: theoretical support, policy
sensitivity, and ease of modeling. The sequence adopted in the development of PCATS can be
depicted as: activity type - location ~ travel mode - activity duration.

Activity Duration Models are first discussed because they are used in the activity type choice
model presented next.!® The distribution of durations of flexible activities is determined by

12 The activity categories used in PCATS are: sleep, personal care (other than taking bath),
personal care (bath), child care, meal, domestic chore, work and work-related, school and study,
social, grocery shopping, comparison shopping, hobbies and entertainment, sports and exercises,
TV viewing, reading, resting, medical and dental, and others. A set of assumptions are adopted
to determine whether an activity is fixed or flexible. Sleep is always classified as a fixed
activity. Personal care (other than taking bath), personal care (bath), TV viewing, reading, and
resting, on the other hand, are always classified as flexible. Activities of the remaining types are
classified as fixed if the respondent indicated in the survey that the activity was subject to both
temporal and spatial constraints; otherwise they are regarded to be flexible.

13 For earlier studies on the subject, see Mannering (1993), Niemeier and Morita (1996), Bhat
(1996a, 1996b), Ettema et. al. (1995) and Kitamura, van der Hoorn & van Wijk (1995).
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6. MICRO-SIMULATION APPROACH TO ACTIVITY-BASED DEMAND
FORECASTING

The second approach is the micro-simulation of activity engagement and trip making. Several
model systems that have been developed attempt to represent the cognitive processes that
accompany activity scheduling and trip planning. These developments reflect advances made in
models of human cognition, decision making and problem solving. For reviews of developments
in activity scheduling, see Axhausen and Girling (1992) and Girling er. al. (1994).

Preceding the current efforts to develop models of activity scheduling is CARLA (Jones et. al.,
1983), which is a model system that identifies feasible alternative schedules from all possible
schedules by applying systems of constraints. STARCHILD (Root & Recker, 1983; Recker et.
al., 19862, b) is a model system where activity-travel behavior is conceptualized as the choice of
a particular schedule from all possible schedules based on utility measures. Following these
predecessors are computational process models that describe how people formulate and execute
schedules. As the name indicates, the computational process approach focuses on the process of
decision making and captures heuristics and short-cuts that are involved, as opposed to assuming
overriding behavioral paradigms such as utility maximization. One example of computational
process models is the production model (Newell & Simon, 1972), which is a model of human
problem solving comprising a set of rules, or condition-action pairs that specify an action to be
executed when a condition is encountered. Several computational process models of activity
scheduling have so far been developed, including: SCHEDULER (Grling et. al., 1989, 1994),
SMASH (Ettema et. al., 1993, 1994), DynaMIT (Tasker and Axhausen, 1994), and the
framework presented in Vause (1995). These model systems are reviewed in detail in Kurani
and Kitamura (1996). The discussions in the rest of this section are concerned with AMOS
(Kitamura et. al., 1993, 1995a, 1996; Pendyala et. al., 1995), and PCATS (Kitamura, Fujii &
Otsuka, 1996; Kitamura and Fujii, 1996), which have been applied to produce forecasts.!!

6.1 PCATS

PCATS simulates the individual’s activity engagement and travel within Higerstrand’s prisms.
In defining prisms for each individual, it is assumed that the simulation period, say a day, can be
divided into periods of two type: open periods and blocked periods. Open petiods are ones in
which the individual has the option of traveling and engaging in activities. Blocked periods, on
the other hand, are ones where the individual has committed to engage in certain activities at
certain locations. Activities participated within a blocked period shall be called fixed activities;

'! The discussions in the rest of Section 6 are excerpts from Kitamura and Fujii (1996).

133



Table 3
Effects of Travel Time Reduction on Activity Engagement and Time-Use Utility

Base Case Strategy 1 Strategy 2
No No No
Stop Stop Stop Stop Stop Stop
Discretionary out-of-home time (hr.) 0.000 0902 0.000 0975 0.000 0902

Travel time (hr.) 1.000 1.500 1.000 1250 0.875 1.500
In-home time (hr.) 5.000 3.597 5000 3.775 5.125  3.597
Time returned home 19:00 20:24 19:00 20:14 18:53  20:24
Probability of choice 0.538 0462 0497 0503 0.562 0438
Expected time use utility 0290 0.138 0290 0303 0.389 0.138

In the case a stop is made on the way home, the 15-min. travel time reduction between work and
activity center under Strategy 1 results in an increase in out-of-home activity time by 0.073 hr.
(4.3 min.), which is about 30% of the travel time saving. The remaining 10.7 min. is assigned to
in-home activities. The utility associated with the pattern with a stop increases from 0.138 to
0.303, with the choice probability increasing from 0.462 to 0.503. Likewise, it can be seen that
the utility of the pattern without a stop increases from 0.290 to 0.389 under Strategy 2 where the
travel time between work and home is reduced by 7.5 min. The conventional unconditional
expected representative utility (denoted as “E[V]”) and the expected representative utility of a
pattern given that the pattern is chosen (“InY €"”), are shown below for these three cases:'’

E[V] In}eY
Base case 0220 0.910
Strategy 1 (improvement between work and activity center) 0.297 0.990
Strategy 2 (improvement between work and home) 0.279 0.964

It can be seen that Strategy 1, which involves the improvement of travel time between work and
activity center, produces a larger expected utility than Strategy 2. Consistent with this, the
representative utility of a chosen pattern reveals that Strategy 1 in fact would offer more benefit.

The analysis of this example is limited in the sense that only two simple alternative activity-
travel patterns are considered for just one person. The results have nonetheless shown that the
model system can be used to evaluate transportation planning options while considering changes
in utilities associated with activity-travel patterns.

10 The discussion here is based on the assumption of the logit model of discrete choice that the
perceived utility of an alternative, say j, can be expressed as U; = V; + g;, where V; is the
“representative utility” and €; is an error term with an extreme-value distribution. Because the
utility measures that can be identified from the analysis here are relative measures, E[V] and
InY e" are not comparable to each other.
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Table 2
Effects of Commute Time Reduction on Time Use and Travel

10-min.
Base Case Reduction Difference
Total out-of-home activity duration 25.56 27.44 +1.88
Increase in travel time 6.78 7.14 +0.36
Frequency of home-based trip chains 0.03 0.04 +0.01
Total time spent at home 216.1 2232 +7.11

5.2 Example II: Time Use Utility

.In another modeling effort an attempt is made to formulate the utility of daily activities. The
utility of an activity is assumed to be the function of the time allocated to it and the attributes of
the individual. The coefficients of the utility function are specified as linear functions of
subjective preference ratings given by the respondent for respective types of activity.

The resulting model system is applied in this example to evaluate alternative improvement
strategies by estimating how travel time reductions they produce may affect the daily utility.
Consider a simple network which encompasses the home base, the work base and an activity
center. In the base case, the travel time between home and work is 1 hr., that between work and
the activity center is 30 min., and that between the activity center and home is 1 hr. Consider the
following two improvement stratégies:

Strategy 1:  reduce the travel time between work and activity center by 15 min.
Strategy 2:  reduce the travel time between work and home by 7.5 min., one way

Suppose work ends at 6:00 PM, and the commuter may choose to make a stop for discretionary
activity on the way home at the activity center. The impacts of the two strategies on the activity
and travel of a hypothetical person are estimated for the activity and travel of the commuter after
work, and are summarized in Table 3 for the case where no stop is made and the case where a
stop is made. Along with the amount of time allocated to out-of-home discretionary activities,
travel time, and in-home activity time, the table shows the probability that an out-of-home
discretionary activity will be pursued on the way home, and the expected utility associated with
the activity pattern.
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5.1 Example I: Evaluation of Induced Trips

The first example is based on a structural equations model system of commuters’ time use and
travel after work.® The data used in the study were collected in 1994 as part of an evaluation
study of the impact of new Wangan (Bayshore) Line of the Hanshin Expressway system in the
Osaka-Kobe metropolitan area. The survey adopted self-administered mail-out, mail-back
questionnaires, which were distributed to 4,714 households along the Wangan Line and several
competing routes. Usable responses were obtained from 1,257 individuals of at least 16 years
old, in 594 households (response rate of 12.6%). A one-day activity diary was included in the
survey instruments. The diary collected, for each activity, information on: the activity type,
beginning time, ending time, facility type, type of accompanying person(s), spatial fixity, and
temporal fixity. For each trip, information was collected on: travel mode, departure time, arrival
time and number of accompanying persons.

The structural equation model system of mobility and time use included as its endogenous
variables: ’ ‘ '

® number of trips after work and before returning home for the first time,

® total out-of-home activity duration (excluding travel) after work and before returning
home for the first time,

® increase in travel time due to trips made to engage in out-of-home activities after work
and before returning home for the first time,

e frequency of home-based trip chains after returning home for the first time till retiring for
the day, and

e total time spent at home after returning home for the first time till retiring for the day.

The exogenous variables include: commute duration, regular work starting time, regular work
ending time, flexible work hours, number of hours overworked, age, work trip mode, number of
restaurants in work zone, preference indicator for out-of-home activities, and preference indicator
for in-home activities.

The estimated model system was used to estimate the impacts of a 10-min. reduction in commute
time on time use and travel. The results are summarized in Table 2. The model system indicates
that the 10-min. travel time saving will lead to an increase in the average total out-of-home
activity duration by 1.88 min. and an increase in the total time spent in home by 7.11 min. The
average total travel time increases by 0.36 min. Over 70% of the time saved is applied to
additional in-home activities, and about 19% to out-of-home activities. The results here indicate
that a relatively small number of trips are induced by travel time savings of the magnitude
analyzed here, and that much of the travel time saved is spent at home.

® For time use analysis in transportation planning in general, see Pas and Harvey (1991).
Examples of empirical studies can be found in Kitamura ez. al. (1992, 1995b).
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‘other’ activities,” and discretionary activities include “other types of shopping, eating out, and
visit/social/sport.” Sex, income, presence of children, marital status, occupation and home
ownership are used as exogenous variables. In addition, the following set of mode use indicators
is developed and used as exogenous, segmentation variables in the model: “exclusively car,” “car
+ walking or bicycling only,” “car + public transport,” and “exclusively mode(s) other than car.”
Model coefficients are estimated by segment while constraining selected coefficients to be
common among subsets (or the entire set) of the segments. This is equivalent as incorporating
interaction terms that consist of combinations of an exogenous variable and one of the
segmentation variables. Based on the results of model estimation, observations are made as to
how the exogenous variables are differently associated with the endogenous variables across the
mode use groups. Golob and McNally (1996) have further extended the analytical scope by
including inter-personal interactions.

These structural equations models have offered insights into the relationship among activity
engagement (often expressed in terms of time allocation) and travel. These model systems,
however, offer no explicit treatment of the decision mechanisms underlying activity engagement.
They represent a translation of a set of hypotheses into a system of simultaneous equations that
involve “causal” links, such as “income affects expenditure,” that are expressed as linear
equations of (latent) endogenous and exogenous variables. This limits the richness of the
behavioral theories that can be incorporated into the model system; relationships derived from
theoretical considerations must be simplified to the form, “A affects B.” In addition, no
structural equations models have been developed where constraints on behavior (e.g., the total
time available is limited to 24 hours per day) are explicitly introduced. Consequently care must
be exercised when applying these models in cases where extrapolation beyond the relationships
embedded in the estimation data set, is involved. Another limitation is that structural equations
models can represent multinomial choices only approximately. In terms of travel demand
forecasting, the models developed so far adopt aggregate representation of travel demand (e.g.,
total number of trips, travel time expenditure by trip purpose, or total VMT), and therefore do not
support the analysis of travel demand where the spatial and temporal dimensions become critical,
such as traffic congestion, pollutant emissions, and evaluation of congestion pricing.

Structural equations models nevertheless constitute a powerful approach to the analysis of travel
demand. In particular, it facilitate expeditious exploration of alternative behavioral hypotheses
and development of quantitative model systems of activity and travel that are capable of offering
results that cannot be produced with the conventional model system. This can be seen in the two
application examples presented below.?

® The discussions in the rest of Section 5 draw from Kitamura, Pas and Fujii (1996).

——
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® Temporal variations: 1t is required that variations in travel demand from day-to-day,’
between weekdays and weekend, and across seasons be represented. For the purposes of
emissions analysis, it is desired that the annual distribution of link traffic volumes be
estimated.

® Trip Attributes: Travel demand must be forecast in terms of link travel volume by mode
by time of day. As indicated in Table 1, emissions analysis using currently available
emissions models requires that vehicle-miles traveled, average speed, fractions of hot and
cold starts, and vehicle mix be forecast by small geographical area (grid). If these
macroscopic indicators of travel demand are to be forecast by aggregating the attributes
of individual trips, then vehicle type and hot/cold start must be determined as trip
attributes in addition to the traditional measures of origin, destination, starting time,
ending time, and mode.

Additional requirements exist for long-term forecasting models, including the representation of:
changes in demographic and socio-economic characteristics of the region (including household
members’ employment status and household vehicle holdings) and the interaction between
transportation and land use (including households’ residential location choice).

Data collected by conventional methods and maintained by MPOs support some of the model
development efforts that are called for by these requirements. It is, however, needed that data
requirements be identified and data collection methods be refined toward the development of
fully activity-based demand forecasting models.

5. STRUCTURAL-EQUATIONS APPROACHES TO ACTIVITY-BASED DEMAND
FORECASTING

Structural equations modeling approaches have been used to capture relationships among
macroscopic indicators of activity and travel, and to explore how these indicators are associated
with variables that are considered to “explain” behavior, e.g., household structure and vehicle
ownership. Structural equations approaches facilitate the examination of alternative hypotheses
about the “causal” relationships among behavioral indicators, while reducing computational
requirements substantially, even when limited-dependent variables are involved, by adopting the
method of moments for the estimation of model coefficients (see Bollen, 1989). Examples can
be found in RDC, Inc. (1993), Golob and McNally (1995) , Golob et. al. (1996), and Kitamura
and Fujii (1996).

Golob et. al. (1996) presents probably the most elaborate model system in this group of studies.
The endogenous variables of the model system are: “work/school activity duration,”
“work/school journey time,” “maintenance activity duration,” “maintenance journey time,”
“discretionary activity duration,” and “discretionary journey time.” Maintenance activities
include “weekly grocery shopping, pick up and drop off passengers, personal business and

7 See Pas (1988).
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be logically supported. Furthermore, by concentrating “average” travel demand, the “typical”
weekday approach offers no information on the distribution of travel demand over a year.
Consequently the approach is incapable of supporting the prediction of the frequency of air
quality standard violations. Much work is needed in this area, in terms of both data collection
and model development.

Activity-based models, especially the micro-simulation approach described later, meet many of
these requirements imposed on travel demand models by the current planning needs. In addition
to these requirements, there are several “desirable” features of activity-based forecasting models.
Useful models of travel demand analysis and forecasting have been developed that do not
necessarily possess all of these desirable features. Yet, developing logically coherent and robust
models of activity and travel that are applicable to a wide range of policy analyses, calls for
additional requirements. The following list is prepared with short-term forecasting in mind:

® Mechanisms of activity engagement: It is desirable that a model of activity-travel
behavior explicitly represent-the mechanism of activity engagement, while considering
the needs and desires for activities and taking into account the availability of resources
(e.g., time and vehicles). In addition, it is critically important for travel demand
forecasting that the decision to change activity location be explicitly modeled (e.g., a
series of comparison shopping activities may be pursued at several different locations,
generating a number of trips).

® [nternal consistency: The model should faithfully represent spatial and temporal
continuity of movement, time-space constraints (e.g., Hagerstrand’s prisms), continuity in
travel mode and various coupling and institutional constraints (Hagerstrand, 1970).

® Comprehensive activity itinerary: All activities, both in-home and out-of-home, should
be included within the scope of the model, and the substitution between in-home and out-
of-home activities should be considered.

® Activity scheduling: Forming an itinerary for a day (or a longer span of time) involves
placing the activities to be engaged in a sequence (sequencing activities) and planning the
starting time for each activity (timing activities). Previous studies (e.g., Kitamura, 1984)
have revealed tendencies in activity sequencing that more mandatory activities tend to be
pursued first. It is also expected that preferences do exist with respect to the timing of
activities. Tendencies and preferences about activity sequencing and timing must be
represented in a model of activity-travel behavior.

® [nter-personal linkages: The household is a unit where tasks are assigned to, resources
are allocated to, and activities are engaged jointly by its members. Task assignment,
resource allocation and joint activity engagement should be properly represented since
travel demand generated by a household is determined by these inter-personal
interactions.
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4. WHAT ACTIVITY-BASED TRAVEL DEMAND FORECASTING MUST SATISFY

When the reduction of peak-period congestion was the major concern of urban transportation
planning, daily travel volume by network link was considered as a sufficient measure for
planning exercises. The requirement that transportation planning analysis must incorporate
emissions analysis, has drastically changed the prerequisites for travel demand forecasting
models. In this section, new requirements for travel demand forecasting models in general are
reviewed briefly. Following this, requirements for activity-based models are discussed.

Weiner (1993) lists as emissions modeling requirements the six items shown in Table 1. What is
evident from the table is that methodologies are called for by which:

® ' trip starting time and ending time can be determined in a logically coherent manner;

® clapsed time between successive two trips by the same vehicle can be estimated such that
whether the latter trip involves a cold start can be determined;

® vehicle type is explicitly treated; and

® day-to-day variations and seasonal variations in travel demand are appropriately captured.

It would be clear that the most coherent and robust approach to address the first two issues would
be to incorporate the time-of-day dimension into the model framework. This is being achieved in
some micro-simulation models systems as reviewed later in this paper.

Although several models of household vehicle type choice and utilization have been developed
in the past (see Kitamura, 1992), none has been adopted by MPOs so far. More critically, these
vehicle type choice and utilization models forecast the total annual VMT for each household
vehicle, but do not match vehicles and trips. In other words, these models do not determine how
the vehicles in a household fleet are assigned to the trips made by the respective household
members. Consequently, the information available from them does not support the emissions
analysis with the spatial dimension. The most coherent and robust approach to address this issue
would be to explicitly model the process of vehicle allocation to trips. This is an area where little
attention has been directed in the past.

Table 1
Emissions Modeling Requirements as
Identified in Weiner (1993)

o VMT by hour of the day by grid square
 Average speeds by hour by grid location
« Vehicle mix by hour of the day by grid square
* Proportion of cold starts by hour of the day
« Seasonal variation in VMT, vehicle mix, etc.
o Annual growth in VMT

There is an increasing recognition that predicting travel demand for a “typical” weekday does not
adequately support transportation planning decision making. When traffic congestion is not
limited to the traditional peak periods of commute traffic, ignoring weekend days can no longer
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There are several factors that have made activity-based models practical tools for travel demand
forecasting (Kitamura et. al., 1995a). They are: accumulation of activity-based research results;
advances in survey methods (e.g., stated-preference (SP) and time-use survey methodologies)
and statistical estimation methods; and advances in computational capabilities and supporting
software (database software, GIS, etc.). These factors together have created an environment
where models of travel behavior can be developed while adhering to the principles of the
activity-based approach. In particular, activity-based micro-simulation of travel behavior has
become a practical tool for transportation planning and policy analysis.

The advantages of the activity-based approach are summarized in Kitamura et. al. (1995a) as:

® daily behavior: treats a daily activity-travel pattern as a whole, thus avoids the
shortcomings of the conventional trip-based methods;

® realism: incorporates various constraints governing trip making, facilitating realistic
prediction and scenario analyses; and

® induced demand.: by representing activity engagement behavior, the activity-based
approach can rigorously address the issue of induced or suppressed demand.

In addition, activity-based micro-simulation of activity engagement and travel offers the
following advantages:

® time of day: predicts travel behavior along a continuous time axis;

® TDM evaluation: is capable of realistically assessing the impact of TDM measures on the
entire daily travel demand;

® flexible and versatile: can be modified for specific study objectives or to address various
policy scenarios, e.g., to evaluate effects of day-care facilities at work, extended transit
service hours, or new transit service; v

® accuracy control: using synthetic household samples,® can produce results with desired
levels of spatial and temporal resolutions; and

® comprehensive evaluation tool: activity-based approach simulates the entire daily
activities and travel. Therefore the effect of a transportation policy on the entire daily
activity, not just commute trips, can be evaluated, leading to better benefit measures.

The activity-based approach implies an expansion of the analytical scope because its subject is
not limited to the trip. This naturally leads to increased levels of data requirements and
analytical complexities. The advantages offered by the approach, in particular the ability to
overcome the limitations of the conventional trip-based methods and to address policy options
that are important in current planning contexts, more than outweigh the disadvantages. In fact
practical forecasting models are being developed as reported later in this paper.

¢ See Beckman et. al. (1995) and Kitamura (1996).
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One of the possible consequences of these limitations is an over-prediction of mode shift.> The
problem is compounded by the fact that the modal split phase of the four-step procedure, where
disaggregate choice models are often incorporated, tends to be most sensitive to changes in the
network level of service. As a result, the four-step procedure may grossly over-estimate mode
shift when in fact travel mode may be the last thing travelers wish to change in response to TDM
measures.

Also stems from these three limitations is the problem that the four-step procedure will not be
able to capture the full impact of a change in the travel environment. Suppose a drive-alone
commuter routinely stops by at a grocery store on the way home from work. Faced with
congestion pricing, this commuter may choose to take a bus to work, and go shopping by auto at
a grocery store near the home base after returning home by bus. The trip-based four-step
procedure is not capable of addressing such repercussions brought about by the commute mode
change.

These examples illustrate that the four-step-procedure is hardly applicable to the analysis of
TDM measures. It is also insensitive to the effects of mounting traffic congestion or travel time
savings due to traffic improvement. While some of the problems discussed in this section may
be resolved by introducing new model elements or modifying some of the components of the
four-step procedure, the problems stemming from the atemporal, trip-based structure are difficult
to eliminate. Consequently developing effective tools for TDM analysis is impractical within the
framework of the four-step procedure.

3. WHY THE ACTIVITY-BASED APPROACH?

The activity-based approach provides a coherent framework for travel behavior analysis and
demand forecasting. While statistical associations, rather than behavioral relationships, drove
model development of the components of the four-step procedure, the activity-based approach
starts with the recognition that a rigorous understanding of travel demand will follow from an
understanding of why and how activities are engaged over a span of time. Another important
distinction is the recognition that trips cannot be analyzed one by one independently because the
activities engaged over a period of time are linked to each other, and consequently the trips made
to pursue these activities are also inter-related.

Because the activity-based analysis attempts to develop model systems based on a rigorous
understanding of why people travel, resulting models are applicable to a much wider range of
situations than is the trip-based four-step procedure. As the examples presented later in this
paper show, the activity-based approach offers a better framework for the analysis of TDM
measures. The issue of induced or suppressed trips can also be entertained with the approach. In
fact most, if not all, of the problems of the four-step procedure described in the previous section
can be resolved by adopting the activity-based approach.

3 Keith Lawton brought this possibility to the author’s attention.
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development to transportation systems management (TSM) to TDM. And energy and
environment have emerged as new concerns of transportation planning. The trip-based, four-step
procedure that was tailored to the planning needs of the 50s and 60s, just does not serve well in
the current planning contexts.

The discussion in the rest of this section focuses on three major sources of problems that are
most deleterious in the current transportation planning contexts: (i) lack of behavioral basis, (ii)
lack of the time dimension, and (iii) trip-based model structure.*

Lack of Behavioral Basis: Attempting to represent demand by the serially linked four model
components presents problems under certain conditions. Suppose parking pricing is
implemented in a downtown area, prompting some travelers to choose suburban destinations.
This change in trip attraction, however, would not at all be accounted for by the four-step
procedure because trip attraction is determined in the trip generation phase, which is not
sensitive to parking cost. Likewise, the impact of new highway segments on trip distribution
would be under-estimated, while mode shift could be over-estimated, because of the typical
insensitivity of trip generation/attraction models to accessibility. Issues of induced trips and
suppressed demand are difficult to address within the structure of the four-step procedure.
These problems arise because the four-step procedure does not represent the decision
mechanisms underlying travel behavior. As noted earlier, people do not decide how many
trips to make before deciding what to do, where to go, and how to get there.

Lack of Time Dimension: The fact that the four-step procedure does not incorporate the
time-of-day dimension is curious since congestion — which has been the single most
important concern of transportation planning — occurs with the concentration of demand in
the same geographical area within the same time period. The absence of the time dimension
necessitates the use of purely empirical, often dubious, procedures to determine hourly

. demand volume. It makes it difficult to thoroughly analyze peak spreading, assess impacts of
congestion pricing, or predict the distribution of cold and hot starts.

Trip-Based: The four-step procedure treats each trip as an independent entity for analysis.
This assumption, on which the structure of the four-step procedure hinges, leads to a number
of serious limitations which stem from the fact that trips made by an individual are linked to
each other and the decisions underlying the respective trips are all inter-related. For example,
consider a home-based trip chain (a series of linked trips that starts and ends at the home
base) that contains two or more stops. The four-step procedure would examine each trip
separately and determine the best mode for it, leading to two major problems. Firstly the
result may violate the modal continuity condition; mode choice for a trip with non-home
origin is conditioned on the mode selected for the first, home-based trip. Secondly, the result
ignores the behavioral fact that people plan ahead and choose attributes of each trip
(including mode, destinations, and departure time) while considering the entire trip chain, not
~ each individual trip separately.

4 The discussions in the remainder of this section are drawn from Kitamura et. al. (1995a) and
partially expanded.

.
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2. A CRITICAL REVIEVW OF THE TRIP-BASED, FOUR-STEP MODELS OF
TRAVEL DEMAND

In the Detroit Metropolitan Area Traffic Study (DMATS) which started in 1953, Weiner (1992)
reports that “Much of the work was done by hand with the aid of tabulating machines for some of
. the calculations.” Given the cost and speed of computation, and the software available for
statistical analysis and data-base management, it is not surprising that the travel demand model
systems developed in the 50s and 60s involved:

® aggregation of data to make the data-base manageable and to reduce computational
requirements;

e simple models that do not require lengthy computation for the estimation of their
parameters and preparation of forecasts; and

® parsimonious models that include only the most salient variables.

When tabulating machines are the only computational tools available, inverting a 5-by-5 matrix
would not be a trivial task. Consequently linear regression models could include only a limited
number of explanatory variables. Likewise, modal split models were zone-based and incorporate
only a few, most obvious explanatory variables.

It should nonetheless be acknowledged that the simplifying assumptions adopted in the four-step
procedure facilitated quantitative analysis of urban passenger travel demand, using home-
interview survey results, land use inventory data, network models, census and other existing data,
and computational capabilities that were available decades ago. When reviewing transportation
planning models that are currently in use, however, one may notice that some are still bounded
by the limitations in computer hardware and software that existed when the four-step procedure
was being developed.

The development of the four-step procedure was motivated by the planning needs of the 50s and
60s when the expansion of transportation infrastructure was of primary concern. This is the
period of the “suburban boom,” whose four main foundations were: new road, zoning of land
uses, government-guaranteed mortgages, and a baby boom (Hall, 1988). With the rapid
suburbanization, what was needed was road networks that effectively connected the central city
as the place of employment and suburbs as the place of residence. Commute trips to and from
work were of primary concern when road networks were planned. Given these planning
contexts, one would agree that the trip-based, four-step model system is a streamlined procedure
which adequately served the planning needs of that time. Indeed it represents skillful
simplifications to develop a practical tool to meet the planning challenges of the time.

The procedure, however, contains limitations, some of which were discussed extensively when
disaggregate choice models were proposed in the 70s. Furthermore, significant changes took
place since the 50s and 60s in demographic and socio-economic characteristics of households
(e.g., more working women, small households and single-parents), urban forms (e.g., commercial
developments in suburbs), industrial composition, distribution systems (e.g., shopping malls),
and consequently in travel patterns. Planning emphases have shifted from infrastructure

122



This, however, is not to suggest that the activity-based approach is inept in providing useful
planning information. In fact, the conceptual framework of the activity-based analysis offers
features that facilitate coherent analysis of travel demand. While no widely accepted model of
activity engagement has been in existence, “utility-maximizing” discrete choice models of
activity engagement and statistical models of activity durations have served as critical
components of micro-analytic models of activity-travel behavior. As is reviewed briefly in this
paper and is treated more rigorously in Axhausen and Garling (1992), Gérling er. al. (1994) and
Kurani and Kitamura (1996), research is progressing at healthy rates in areas that support the
construction of activity-based model systems of travel demand forecasting.

The forecasting models reviewed in this paper can be classified into two groups:

® structural equations model systems of measures of mobility and activity participation, and
® micro-simulation model systems of individuals’ activity engagement and travel.

The structural equations model systems capture relationships among individual-level, macro-
measures of mobility and activity participation (e.g., number of trips, total travel distance, total
travel time and time allocated to each type of activity) and exogenous (explanatory) variables
(which are typically person and household attributes, network variables, and land use
information).  In the sense that they do not explicitly model the behavioral mechanisms
underlying activity participation and travel behavior, but merely trace salient statistical
relationships among indicators of activity-travel behavior and explanatory variables, one may not
consider them truly “activity-based.” Yet they have proved to be effective tools in addressing a
range of issues including that of induced travel demand.

The latter, micro-simulation approach includes modeling efforts that attempt to replicate the
decision mechanisms underlying activity engagement and travel. Several model systems have so
far been proposed. They each have unique focuses, €.g., memory structure, search processes,
activity scheduling, adaptation, and time-space constraints. These models are by definition
microscopic and require types of data that have not been used in traditional travel demand
analysis (Axhausen, 1995, considers data needs for models of activity scheduling). Yet,
prototypes exist that rely on information that is mostly available from local planning
organizations.

Reviewed in this paper are samples of studies from these two groups, in which activity-based
models have been applied to demand forecasting and policy analysis. The objectives of this
review are to summarize the progress so far made in the application of activity-based models to
demand forecasting, and to demonstrate the benefits this approach will offer when it is fully
developed. In the next two sections, the limitations of the conventional trip-based models and
the reasons why activity-based models should be used, are discussed. In Section 4, requirements
for activity-based demand forecasting are discussed. Application examples of structural
equations models and micro-simulation models of activity and travel are presented in Sections 5
and 6, respectively. Section 7 offers conclusions.
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Focus on sequences or patterns of behavior, not discrete trips;

Analysis of households as the decision-making units;

Examination of detailed timing and duration of activities and travel;

Incorporation of spatial, temporal and inter-personal constraints;

Recognition of interdependence of among events; and

Use of household and person classification schemes based on differences in activity
needs, commitments and constraints.

Many studies have been undertaken, placing different levels of emphasis on each of these points.
Reviews of activity-based studies accumulated thus far can be found in Damm (1983); Jones
(1983); Kitamura (1988); Jones et. al. (1990); Axhausen (1990); Axhausen and Gérling (1992);
Girling et. al. (1994); Jones (1995), and Kurani and Kitamura (1996).

The activity-based analysis is now entering the stage of producing practical tools for policy
analysis and demand forecasting. The tools that are being developed may look quite different
from the conventional, trip-based tools of travel demand analysis. Trip-based models typically
determine the number of trips first, and then determine the attributes of these trips to produce
demand forecasts. This, however, is not consistent with the way we behave. No one would think
about how many trips to make when developing a plan for a day; rather, one would think about
what she wants to or. needs to do, where the activities can or need be engaged, and, only then,
would think about how to visit these places. Importantly, how many trips will be made depends
on how the visits to different places are sequenced and combined into trip chains. Trip-based
approaches to travel demand forecasting thus rest on dubious behavioral ground.

Activity-based demand forecasting, then, should be based on a model of activity engagement,
and then should forecast the number of trips and their attributes, given a set of activities to be
pursued. Modeling activity engagement, however, is not at all a trivial task. Kurani and
Kitamura (1996) note that

“the paradigm [of activity-based analysis] has yet to develop or adopt a
comprehensive theory of activity participation. ... Lacking such a theory ..., we are
able to assess neither the motivations for choosing to participate in a given
activity nor the decisions as to when and for how long to engage in a chosen
activity. Chapin (1978) applied a simple theory based on Maslow’s “hierarchy of
needs” (Maslow, 1970) in his investigation of differences in activity patterns
between different socio-economic groups of people. Tonn (1983a, 1983b)
delineated a system of activity participation, but acknowledged he had to draw on
an eclectic blend of psychological theories and maxims, none of which could be
regarded as widely accepted. Bhat and Koppelman (1993) have proposed a
framework of activity program generation, but this framework is not a direct link
between activities and needs.”

Presumably this is where the challenge in activity-based analysis lies. For example, Gérling and
Garvill (1993) propose that investigation be made into how the activities performed are related to
the individual’s goals.
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1. INTRODUCTION

In the period of about two decades since the activity-based approach to travel demand analysis
was proposed, extensive empirical results have been accumulated, methodologies for collecting
data needed for activity-based analysis have been developed, models capturing various aspects of
activity-travel behavior have been formulated, and model systems for demand forecasting are
now being constructed. The activity-based approach remained largely within the domain of
academic research until recently, when the limitations of the conventional, trip-based demand
forecasting tools in the current planning contexts were widely recognized.® In fact the activity-
based approach is the only approach that can offer coherent frameworks for policy analysis and
demand forecasting with the wide range of travel demand management (TDM) and other policy
measures that are being considered for improved mobility and reduced environmental impact.

Jones et. al. (1990) provide a comprehensive definition of activity analysis as: it is a “framework
in which travel is analyzed as daily or multi-day patterns of behaviour, related to and derived
from differences in life styles and activity participation among the population.” The “emerging
features” of activity analysis are identified (Jones et. al., 1990) as:

e Treatment of travel as a demand derived from the desires, demand to participate in other,
non-travel activities;

3 Kitamura (1988) attributed this inattention by the practitioners’ community to the fact that the
activity-based approach is not suited for the evaluation of capital-intensive, large-scale projects,
but it is better suited for refined, often small-scale transportation policy measures. Unfortunately
small-scale projects can rarely afford elaborate analysis. This is no longer the case, at least in the
United States where the importance of refined transportation control measures is well recognized
and efforts are being made to promote their implementation and to assess their potential
effectiveness.
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The limitation of data to household cross-sectional will also probably limit model development
to utility maximization, and raise issues of temporal truth. However, in my opinion, activity
pattern, or travel pattern based models using utility maximization are preferable to trip based
models, and would represent a considerable improvement over current practice.

I am also of the opinion that it is time to consider smaller samples of households, with real
compensation for the level of effort, together with the use of direct contact surveys utilizing
interactive computer based techniques.
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DATA COLLECTION METHODS
A plea!

The Irvine conference on household surveys brought to the fore issues of non-response and
biased samples. Our experience in Portland with a relatively complex activity survey shows a
much worse than expected non-response bias (both household and item). There has been a
direction in the US that has moved us away from in-home surveys and towards mail-back and
telephone. We have put more value on quantity than quality. With a section of the population
being functionally illiterate, the use of written diaries does not make sense, as an example, the
Portland survey has a good sample of the very literate, as a look at reported occupations
discloses. The answer does not lie in simplifying the questions, (we would still have some
problems), the illiterate and semi-literate have lives, activities and travel, and make the same
kind of behavioral decisions as others — we need to get their input, and in the same detail!

We should seriously evaluate the use of more carefully chosen, smaller samples, using direct
contact and paying for cooperation (their time). Data collection needs to be automated (laptops
etc.), and we need to design interactive stated response experiments that key directly from
revealed data at the same collection time. There are examples of this approach outside the US.

I would also pose a heretical question, is it time to consider surveying a single person from each
household? We are looking for complex information on revealed and stated response which
increases the household response load. Does the increased household load lose more than is
gained in explicit household member interaction? The alternative might be to space the
household members over several days, or use multiple interviewers. The ATAQ survey suggests
a practical in-between approach where detail was collected on all members, the changes were
applied to the major traveler and responses of other members were collected if the responses of
the major traveler would affect their pattern. However the main respondent was always an auto
driver, so that the collected trip characteristics were relatively simple.

If we move to direct contact surveys, we may also want to depart the flawed world of random
digit dialing samples.

CONCLUSIONS/OPINIONS

My conclusions are that both revealed household activity (cross-sectional) and stated response
techniques are needed for near term activity model development. In the case a study area with no
existing household survey, the fielding of the revealed and stated response should be a joint (and
simultaneous) exercise. For regions with an existing (current) household survey, stated response
will still be necessary to answer many policy issues, although the scope may be less onerous.
This joint approach gives much more information for the development of better utility
maximizing models and is essential for the development of microsimulation models.
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In the long run, the joint RP/SR will probably be used as the primary source of data for heuristic
model development. In this case, the experiment can be widened to determine the non-
constrained choice of activity pattern. This was suggested by Axhausen in his presentation at the
Eindhoven conference.

A different and more direct approach is suggested by Ettema, Borgers and Timmermans in their
description of the development of SMASH. This is a two-stage experiment:

In the first stage, the respondent details, for a list of activities, last occurrence (when), frequency
(per month), time to perform (min. max. and average), the likelihood that this activity will be
performed on a predetermined target day (next day), the need for performance with others and
information on all known possible locations for this activity. The respondent is also asked to
enter travel times for available modes between each pair of activity locations identified. This data
was collected in a personal interview using an interactive computer procedure (MAGIC).

In the second stage the respondents were asked to build an activity schedule (interactively), for
the following day. All of the information about the development of the activity pattern was
recorded by the program, which included checks for feasibility, activity overlap, and time used
(by the scheduler). This data was then used to build a model of the activity scheduling heuristics.
This kind of approach (determining the revealed choice process) would also appear to provide
some promise in the future. Again, application and calibration/validation against the aggregate
values from a revealed preference activity pattern would be appropriate.

Both the ATAQ and SMASH examples make use of interactive computer interviewing, with
great success. Given the current capability of laptops, it is hard to justify using paper diaries and
CATI or mail-back -- complex diaries, with the need for good literacy, lead to obvious response
bias problems.

Longitudinal panels offer little in terms of short term application, but much in understanding
revealed response to changing situations. For “slow” decisions such as location choice, they are
a possible source of revealed data. Given that stated response is assumed to be more suspect
when applied over long time horizons, this becomes important. As the questions on joint
interaction between land use, activity space and transportation become more insistent, and the
need to model, or evaluate this interaction is needed, the need for panel data will be real. This is
perhaps, the hardest “sell” in terms of a research objective.

Retrospective surveys may be a viable alternative to panels for understanding slow response
decisions, and may certainly yield results in a more timely and less expensive manner than
panels, research is needed here to determine valid retrospective time horizons, among other
issues.
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4. RETROSPECTIVE SURVEYS

This is an area that is not much discussed in transportation literature, however, given the new
concern for long run effects of transportation infrastructure on land use and auto acquisition, this
might be a fruitful alternative to longitudinal panels. The discussion of retrospectives versus
panels is somewhat analogous to the RP-SP debate, only here it is revealed behavior versus
stated behavior.

Issues here include: the determination of “true” frequency of the occurrence of the choice
(analogous to choice based sampling); the survey of respondents who had not made such a
choice, but might have considered it, to determine null response; and the determination of an
acceptable retrospective time horizon for various actions of interest.

SURVEY ROLES AND INTEGRATION

Where do the various methods fit, what are their roles, how do we develop an integrated and
coordinated approach to data in the short and long term?

I believe the essential base element is the household (or person) activity survey. This is needed,
under the utility maximizing paradigm, for both model estimation and for calibration. It is also
necessary for the calibration of rule-based heuristic satisficing model development. In the
immediate short term, this is the only source of data available, and, in fact constrains the choice
of activity models in the short term. The most obvious application is in activity pattern models
that use utility maximization.

To date, true stated preference models have been largely limited to trip-based analysis. The
consideration of stated response to generate rules and constraints for a satisficing approach would
also appear to be a possibility. In terms of short term practicality, this would have to be a
combined RP/SR on individuals (rather than households), where a base pattern is revealed and a
concurrent stated response is used to probe for both response and decision rules. A recent
example of this approach is the Washington survey done as a part of the development of AMOS,
which was limited to out of home activity patterns that included a work activity. That procedure
could certainly be widened to include all activities, and to include non-workers. The model
development could be completely heuristic, or hybrid, including utility elements. The model
could in fact be calibrated/validated against the aggregate values from an existing household
survey.

Perhaps the best éxample of a joint RP/SR survey that I am aware of, is the Adelaide Activity-
Travel Questioner (ATAQ) - (Jones, Bradley and Ampt). This survey successfully demonstrated
an activity approach that considered all family members and measured the effects of changes to
the journey of one of them. It was also a computer based survey that was well ahead of its time.
The thought that this example is ten years old is humbling. This example of the integration of
RP and SR, with enhancement, might well form the basis of survey techniques for moving into
fully informed activity modeling.
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3. LONGITUDINAL PANELS

Longitudinal panels can be the repeated survey of revealed behavior of the same respondents
over time, as their situation or environment changes at a fixed time interval (e.g. every 6
months), or a study of revealed behavior before and after some anticipated change in the system.

It is possible that this kind of study is the only way to obtain data for models of “slow” decisions
such as household location and auto acquisition/disposition choices. It is certainly true that this
is the only source of revealed preference data for such “slow” decisions. This is also a source for
modeling the effects of household transitions (births, deaths, marriage, children leaving home,
new job). Its value as a source of information on daily travel choices is more problematical as
changes in behavior over time occur as the result of many changes in stimuli. Just as cross-
sectional revealed preference has limits on use of many variables that are of policy interest, due
to correlation and confoundment, and a large part of the model representing unexplained variance
(a reason for SP experiments), so do panels, with the addition of changing preferences over time
probably exacerbating this problem. -

The use of data of this sort for immediate application in activity models is limited to the use of
already collected data. The length of time for development and deployment of this source of data
is in the order of 5 or more years. A consideration for this conference is the utility of the use of
existing panels (e.g., the Puget Sound survey which only has travel related activities), and the
possible value of survey enhancement (in terms of geocoding, and the addition of needed
transportation level of service, environmental and accessibility variables between and at
household and activity locations). This raises issues of transferability (strongly linked to the
enhancement grain — network, geocoding).

From the point of view of the advancement of activity-based forecasting, it would appear that the
institution of a longitudinal panel of activity participation, travel and time use would be useful.

A discussion issue here is the role of such a survey — to look at “slow” decisions only, to look at
stability in activity participation and duration (which could form a strong modeling base if there
is temporal stability, and of course lead to model transferability) or to use it as a base for full
information on travel decisions?

Another issue is the cost and continuing effort for these types of surveys. It is unlikely that most
MPOs can find the political support for a large expenditure on something that has a delayed pay-
off (beyond the political term limits of some states).

The final disadvantage is that the design and fielding of many such panels would stretch the
skilled resources necessary to design and carry them out. Is it time to look at a national effort —
and if so, would this be better as a few projects in well chosen cities, or would it be better to do a
nationwide survey in the same way as the National Personal Travel Survey (NPTS)? Should it in
fact be integrated with, or replace the NPTS?

Is it worth doing at ail?

113



The real promised strength of stated response is in the formulation of heuristic, rule-based
models of adaptation. This has applicability to the policy analysis of control strategies, but to a
large extent is still firmly rooted in academic research. Introduction of these techniques into a
model paradigm that considers the interaction and feedback between demand and supply has not
yet been demonstrated.

The other probable major role for stated response is in the generation of a daily (or weekly)
activity-travel “plan” or “agenda” — the desired set of activities contemplated by the person or
household. This base pattern is usually assumed to be developed from the revealed preference
household activity survey (factored), which in fact displays already constrained choices, or to be
generated synthetically. In most of the adaptive models this base pattern is heuristically
modified until an acceptable and practical activity pattern is found, following the introduction of
some change. In the case of the proposed TRANSIMS formulation this is then modified further
following the feedback of the aggregate effects of all decision makers on the system.

For policy analysis in terms of response to TDM actions, this technique is relatively quick to
deploy and to develop a model response to actions affecting a specific market segment. The
most recent application of this type in the US has been in the development of TDM response on
the part of commuters to various policy changes in the Washington DC metropolitan area. This
was described as a stated preference survey and was fielded using Computer Aided Telephone
Interview (CATI) methods — which meant the sequential rather than parallel (simultaneous)
consideration of choices. The results of this survey were used to calibrate the initial element of
AMOS, demand response to TDM actions, using neural networks of behavioral adaptation
(Pendyala, Kitamura and Reddy). In terms of the Lee-Gosselin taxonomy, this survey could
perhaps be described as Stated Adaptation, or on the border between SP and SA. The other
example, which. will be discussed later, is the Adelaide Travel-Activity Questioner (ATAQ)—
(Jones, Bradley and Ampt), which was an early example of joint RP/SR, considering stated
adaptation with the activities of all members of the household.

My own view is that this area (stated response) is likely to give us the most effective way of
getting information for new activity-based models in a reasonable time period. However,
because of complexity, it will mean a move away from the quantitative SP to more qualitative
flavors of stated response. The issue here is that transport modelers are (in the main)
uncomfortable with stated preference as compared with revealed preference. It will be
important, in the workshop, to explore the value of the more general stated response techniques
and, indeed, the value of the discovery of rule parameters in constraining outcomes. While we
are uncomfortable with non-statistical models and measures, there is no reason to believe that
because we cannot look at the goodness of fit statistics, non-statistical methods are inherently
inferior to statistical methods. How well, or realistically the model can be specified, is probably
as important as having a model which has good goodness of fit measures using variables whose
coefficients leave much of the behavior unexplained.
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Taxonomy of stated response surveys: Martin Lee-Gosselin
BEHAVIORAL CONSTRAINTS
OUTCOMES

(expressed as attributes,
personal,/household/social/spatial/supply, etc.)

Mostly Given Mostly Elicited
STATED STATED
PREFERENCE TOLERANCE
(focus = tradeoffs, (focus = limits of
Mostly Given utility) acceptability and
‘ thresholds for change)
“Given the level of
attributes in these “Under what
alternatives, which would circumstances could you
you prefer: imagine yourself doing:

[A]..? [B]..? [C]..? |[rl]..? [r2]..?

erc.. [r3]...7 etc..”
STATED STATED PROSPECT
ADAPTATION

(focus = learning processes;
information seeking; the
imaging, formation and
testing of choice sets;
metadecisions)

(focus = reactive and trial
behavior; problem-
solving, rules)

Mostly Elicited

“Under what circumstances
would you be likely to change
“What would you do your travel behavior and how
differently if you were faced | would you go about it

with the following specific | [.--broad context]”
constraints: [...detailed
scenario]”

For use in utility maximizing activity models, the formal stated preference approach, with an
orthogonal trade-off design has the advantage of quantitative integration with revealed
preference. The disadvantage is the difficulty of dealing with complexity of response choices.
For example, even without consideration of interaction among household members, a design that
in response to (say) congestion pricing can both include the response in the trip (change mode,
change destination, change time of day, not take trip) and the alternatives in activity chaining and
activity patterns and duration of activities, yields a set of combinations that is impractical.
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INTRINSIC STRENGTH

Many regions have recent data from such surveys, with varying levels of in-home activity
coverage. These surveys are usually large enough to reveal a large number of different activity
patterns, which can be used as a basis for at least an out of home activity pattern based model.
Surveys of this type take a minimum of a year to design and field, with another 6 months to get
clean the data and append the level of service and accessibility data necessary for model
estimation. (This would be an optimistic/aggressive scenario). They can be designed, fielded
and used to prepare models within a 2-year time frame. This would have to be the primary
source for models that can be implemented now.

2. STATED RESPONSE

This is a collection of methods that can be deployed in a relatively short time frame, and a very
promising source of data for the development of activity based models which take into account
adaptation, (heuristic) rule based decisions and satisficing. There is a confusion of terms and
vocabulary. It is useful to consider the taxonomy suggested by Martin Lee-Gosselin, shown in
the following table.
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amounts of unspecified time, some of which (like eating) could be done inside or outside the
home. The Research Triangle survey dealt with this by only requiring detailing of time used in-
home for things that could be optionally done away from home, the rest being lumped into an
other category.

Travel As An Activity

The activity surveys preceding the Dallas-Fort Worth survey treated travel as a means, not as an
activity in itself. The format was to ask the following information: the first activity of the day,
then ask if it included travel, if so, details on the trip were collected; then.... “what did you do
next”, and ask if travel were needed ... etc. It was noticed during the Portland survey that
respondents had difficulty with the concept of travel not being an activity. When the North
Central Texas Council of Government’s (Dallas-Ft. Worth) household survey was extensively
pretested, the same problem was noticed and the questionnaire re-cast with travel as an activity.
This instrument is currently in the field.

INTRINSIC LIMITATIONS

The primary Timitation of a cross-sectional survey is the assumption that cross-sectional
differences in response in many individuals to different situations can be extrapolated into a
longitudinal response of specific individuals tc a changed situation, which raises questions for
TDM policy analysis. If this is not true, questions about temporal stability are raised.

The second limitation is the lack of variation in some specific key variables. The primary
variable here is the cost of driving and transit fare. Out of pocket costs of driving are primarily
fuel based — constant, the major differences being in fuel economy of the car chosen — rarely
included in data for model estimation, and more difficult to include in model application (how do
we know which car would have been used by non-car choosers?). In reality the type of car
acquired and the number of cars acquired are (or should be) endogenous not exogenous variables,
and are a function of fuel price, among other things. For many MPOs the only other car-based
cost is parking, in a limited number of activity locations. Transit fares in most US cities are
fairly flat, being zone based with discounts for passes. Only a few cities (such as the San
Francisco area) have the multiplicity of transit suppliers and the number of tolled bridges that
will provide rich enough data on user costs in terms of money.
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Research carried out on the Dutch panel data, and the Portland data (discussions with Kitamura
and Golob) suggests that travel time increases for the commute are traded off against truly
discretionary time: recreation, either in-home or out and household maintenance (chores). The
scheme used for Portland is an example of an attempt to create a scheme that allows more insight
into trade-off behavior by using a richer set of activity classification than traditional travel
surveys. At some point this approach would lend itself to evaluation of the change in quality of
life as a way of considering transportation issues. Portland Scheme:

The Portland activity data was collected open-ended and coded to the following set by the

interviewer.

Household Sustaining
Meals

Work

Work-Related

Shopping (General)

Shopping (Major)

Personal services

Medical care

Professional services
Household or personal business
Household maintenance
Household obligations
Pick-Up-/Drop-Off passengers

Social Activities
Visiting

Casual entertaining
Formal Entertaining

In-Home Activities

Personal Enrichment
School

Culture

Religion/Civil Services
Civic

Recreation and Other Diversions
Amusements (at home)
Amusements (Out of home)
Hobbies :
Exercise/Athletics

Rest and Relaxation

Spectator Athletic Events

Out of area travel

Other
Incidental travel
Tag along travel

There has been considerable discussion on this issue in the development of recent household
surveys in the US, with no closure. The practice ranges from no in-home activity classification
(obtained in a traditional travel survey) to an attempt to get all in-home activities (e.g., Dutch
Panel — all, and Portland — for activities whose duration was greater than 30 min.).

The acceptance of the concept of the modeling of activity sequencing and duration, together with
the choice of location and travel (if out of home) requires an accounting for time from waking up
to sleeping at the end of the day. The level of detail of in-home activity classification is an
important item for discussion. However the approach used in Portland, attempting to get great
detail, led to problems with completing the survey until a threshold of greater than 30 min. time
use was introduced. Using the 30 min. threshold led to non-reporting of meals, and large
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1. There is in fact a relatively small marginal increase in size and complexity for a full activity
survey when compared with the data required in a traditional survey of travel behavior. As
an example, the Portland survey had a mean of a little over 15 activities per household per
day, about half of which required travel (15+ activities, 9.2 at home, 5.8 away, with 8+ trips).
The activity and time-use survey requires no more household data and no more person data
than the travel survey (in Portland 200 items for an average household). The data collected
for a trip consisted of an average 32 items, including address elements, or 256 per household
per day average. The data collected on an activity with no travel consisted of 8 items or 74
per household per day and the data for an away activity (also 8 items) 47. This gives an
average of 577 data items versus 503 items. The increased data collection to include
activities thus added 15% in items recorded. (But does not add to the post treatment of
address geocoding and the addition of modal impedances). An incidental benefit of this
approach is that the focus on activities probably leads to better reporting of short auto trips
and non-motorized trips (appears to be true in Portland).

2. The data collected with the intention of building activity pattern models or activity
sequencing and duration can also be used for the estimation of trip chaining (or tour based)
models, or of traditional trip-based models. There is no risk in the fall-back to a less
ambitious model, the flexibility to do more has been built in at a marginal cost.

Given that medium-scale (2,000 to 15,000 households) household behavior surveys are typically
undertaken only every 10 years or so, it is important to develop the survey in such a way as to
maintain maximum flexibility in model development. It is important to consider a possible
change in model paradigm.

From the point of view of building either simultaneous, utility optimizing models or sequential
decision microsimulation models, the needs for data from the household activity survey appear to
be nearly identical in terms of content (but probably not in the detail of that content). The same
survey can be used!

DEMANDS ON INSTRUMENT

There are some extra demands on the design of the instrument to include possible activity model
use. These include the classification of activities, the determination of the best practical way to
obtain in-home activities and whether to include travel as a discrete activity.

Activity Classification

Ongoing surveys and analysis of time use by individuals outside of the transportation community
exist (for example the work of John Robinson at the University of Maryland). To the best of my
knowledge, none of this work has been done on the basis of all members of the household.
However the existence of this source of secondary data suggests that an activity classification.
scheme that translates to a superset of the secondary data would be useful.

107



1. A traditional cross sectional survey of household behavior, with minor embellishments to
shed more light on the activities from which travel demand is derived.

2. A stated response survey, which investigates individual response to hypothetical variations in
the behavioral environment. Stated preference is a subset of this group, using a trade-off
exercise in a rigorous experimental design, in order to quantify the responses. Stated
response has usually been applied to a limited market segment. Stated response can also be
used to explore the existence and parameters of decision rules, which can be used to develop
a set of activity plans or agendas which would represent the desired demand set, absent
constraints. This might be the way to develop the synthetic activity-travel pattern for the
planning region that can be used for the base in the application of adaptation models.

3. A longitudinal panel survey of activities and travel. In the short term, the transfer of
adaptation/response to changes in the behavioral environment from an existing longitudinal
panel survey is an important consideration. This data source may be the only one that is
useful for the development of slow-response behavior such as household location decisions
and automobile holdings transactions. Although retrospective surveys to determine decision
rules may be quicker and more fertile.

4. A retrospective survey to investigate “slow” response behavior. I am not aware of the use of
such a method in the transportation field. However, a household location decision is, in fact
a joint consideration of location, auto acquisition and expected travel modes. Auto
acquisition/disposition decisions are joint mode choice decisions.

What follows is a closer look at the four sources of data, with the most detail on the methods
that are available for immediate application.

1. CROSS-SECTIONAL SURVEY OF HOUSEHOLD ACTIVITIES AND TIME USE

This survey is very similar to the traditional cross-sectional household travel survey, and in fact,
the traditional travel survey has out-of-home time use. The classification of activities has been a
very simple one, based on an expanded set of “trip purposes” - usually work, school, personal
business, medical/dental, serve passenger, social/recreational, convenience shopping, comparison
shopping, and eat meal, with the addition of “home” as an origin or destination of a trip.

There has been a gradual progression in the USA of expansion in the scope of the travel survey
and a gradual transformation into a household activity survey. This started with the Boston and
Los Angeles surveys (1990-1991). Some recent (1994 to 1996) examples of surveys that have
been expanded to include in-home activities (to some degree) are Portland, the Research
Triangle (Raleigh-Durham-Chapel Hill), Honolulu, Dallas-Fort Worth, and Bay Bridge Corridor
(MTC, San Francisco region). Of these, only Portland and the Bay Bridge surveys attempted a
set of activities undifferentiated between in-home and out (with moderate success in the Portland
case). There are two important points to be made:
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Issues include activities to be served, the arrangement of those activities into a daily and weekly
pattern, the linking of out-of-home activity patterns into complex tours or journeys, and the
consideration of the trade off between in-home and out-of-home locations for an activity. There
is also the issue of interaction among household members. While this policy-sensitivity to
management and control issues is well known and understood, an emerging concern is becoming
important at the MPO level in the Pacific Northwest. That issue is growth, the management of
growth, and the effect of the provision (or non-provision) of transport infrastructure and the
effect of transport control strategies on growth and livability.

MODEL STRUCTURE

There appear to be two basic approaches to activity based modeling. While a superficial
examination of these approaches would suggest the same basic data needs, a closer look reveals
some important differences.

The more traditional approach considers a classification into patterns of activity and/or travel.
This approach has used utility maximizing and nested logit more recently (for example, the
Stockholm model — Algers, Daly, Kjellman and Widlert; and Ben-Akiva and Bowman). This
approach has a long history, with STARCHILD (Recker et. al.) qtd. in Pendyala Kitamura and
Reddy, - one of the first activity pattern based models; the journey or trip chain approach dates
back to 1979 (Adler and Ben-Akiva).

A newer and more radical approach utilizes micro-simulation, and rule based and satisficing
heuristics in models that seek to simulate the response or adaptation to change (in, for example,
the urban infrastructure, transportation infrastructure, transportation pricing, congestion, family
transitions). Examples of this latter approach include SCHEDULER (Garling ez. al.) qtd. in
Pendyala Kitamura and Reddy, SMASH (Ettema, Borgers and Timmermans) and AMOS
(Pendyala, Kitamura and Reddy). This line of research seems to date from the mid 1980s. The
microsimulation approach is consistent with the described (but not detailed) approach proposed
in TRANSIMS (Los Alamos).

In practice, both approaches require a cross sectional base of daily activities and travel in order to
implement a regional model of travel that reflects the aggregate effect of the disaggregate choices
on the supply, and the effect of the ensuing changes in the supply side characteristics on the
disaggregate choices (demand). While the utility maximizing approach also needs the revealed
preference (cross-sectional) survey for model estimation, it is not clear that this is true for the
micro-simulation/-heuristics/-satisficing approach.

DATA SOURCES

There are basically four possible sources of data/information with which to develop activity-
based models:
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15 1995 at the Beckman Center, Irvine, California. The proceedings have just been released by
TRB (PROCEEDINGS 10).

MPO PERSPECTIVE

MPOs are, of course, far from homogenous and many will need to be more strongly convinced
that trip based models are inappropriate for such things as TDM evaluation and mode choice
analyses. There are two concerns that need to be addressed before even the more progressive
MPOs will easily start activity model development and implementation.

The first concern is the perception that the academic community is leading the charge to move to
a new paradigm (not necessarily true). There is a lack of a unified vision on the part of the
acaderhic community as to what is a reasonable way to proceed. This lack of a clearly articulated
direction, and the competition among researchers, leaves the MPO practitioners confused and
uneasy. Given the state of the art and the role of academics, to raise questions and suggest
answers, this lack of a unified direction is perfectly reasonable.

I would suggest that the real problem is that the practitioners (public and consultant), are more
concerned with maintaining the safety and security of current practice, than they are with the
clear limitations of current practice. I think also, that most of us are so busy that there is little
allocation of time to acquire an awareness of research that shows promise, and examples
(overseas) of applications of this research. Perhaps we would achieve more if we see it as our
(practitioners) job to develop a somewhat unified approach in the development of applications.
Unless we do, trip based models will be with us for many more years.

The second concern comes from the fact that MPOs (and their consultants) are almost always in
a production mode — modeling regional plan alternatives, conducting Major Investment Studies,
trying to model TDM actions, doing air quality conformity evaluation. The flow of federal funds
to a metropolitan region depends on this pipeline, and the flow of funds is the reason for being

elements of current models, and using adaptive models initially as an adaptation of the forecasts
of the emerging regional models might be important. An effort to get some agreement on where
we want to go and a clear plan for gradual implementation, a picture of the trajectory from the
existing models to the new, would seem to be a worthy goal.

MODEL STRUCTURE AND NEEDS

It is axiomatic that the needs of the proposed model(s) drive the definition of data needed to
support their development. This conference is about model structure development, with data
needs becoming clearer from the recommendations that are made.

From the point of view of developing and choosing surveys, it is important to first visualize
where models are headed. The needs today are for policy-sensitive models that can address
transportation demand management actions in the context of how individual decisions are made.
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ABSTRACT

This paper, written from a practitioner perspective, briefly discusses model structure direction
and implied needs. The models are categorized into two basic groups, activity pattern utility
maximizing and micro-simulation approaches utilizing rule-based and satisficing heuristics. The
four major possible sources of information for activity models: cross-sectional household
(revealed preference), stated response, longitudinal panels and retrospective surveys are
discussed, with the level of detail being higher for methods with short term applicability. The
surveys are also discussed in the context of the two basic model categories. The conclusion is
that both cross sectional and stated response are needed in the short term, that the use of cross
sectional data alone may limit mode] development to utility maximizing models, and that the
combined use of revealed and stated response is necessary for the development of micro-
simulation models. Data collection methods are briefly discussed and consideration of direct
contact interactive computer based surveys is suggested.

INTRODUCTION

I am a modeling practitioner at a Metropolitan Planning Organization (MPO). For the past
several years we have been engaged in the development and deployment of surveys that will
allow the introduction of either journey based (as distinct from trip based), or activity based
models. My intention here is to examine the various approaches and data sources, and attempt to
persuade, based on my experience and (slowly growing) awareness.

The stated purpose of this conference is to identify activity based techniques that can be used
now by MPOs and state DOTS, and to recommend actions for advancing the state of the art of
activity-based travel demand forecasting. The purpose of this resource paper is to demystify data
needs for near-term application, and to suggest data needed for advances in the state of the art in
activity based forecasting. The intention is to raise issues for discussion during this conference.

There is no intention of duplicating the detailed coverage of household travel surveys in the -
Conference on Household Travel Surveys: New Concepts and Research Needs held March 12-
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The term “failure” was originally used in this literature because of the applications in medical
science and industrial engineering, since the former dealt with the duration of a patient’s

survival after surgery or treatment, while the latter dealt with the length of time before a part
failed.

Specifically, Bhat (1996a) incorporates a non-parametric baseline function as well as non-
parametric control for heterogeneity.

While air quality has been the focus recently in the U.S.A., in other industrialized countries
there is considerable interest in the concept of “sustainability”. It is interesting to note that
both of these concermns lead to a need for better models and analysis tools — tools that can
deal with demand management strategies and that are more accurate and precise.

In part to protect against criticisms of their work, it has become standard for MPO’s and other
agencies developing travel demand models or undertaking household travel surveys, to
constitute a group of “experts”, generally referred to as a Peer Review Group or Peer Review
Panel, to advise the agency and/or the consultant undertaking the model development work.
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are not modeled in traditional approaches to travel demand analysis, yet they require our
attention if our models are to be suitable for addressing contemporary planning and policy -
analysis issues.

Computational process models, in particular, open up completely new possibilities in travel
demand modeling. However, these models are quite different from the conventional
mathematical-statistical approaches commonly used in travel demand modeling, thus it may take
some time and comparative analyses before this approach becomes accepted in the travel
forecasting community. Specifically, there is a need to develop methods for calibration and
validation of such models.

The diverse methodologies being employed at the current time to model activity-travel behavior,
and the variety of phenomena being modeled, is both good news and bad news. The good news is
that the activity-based approach is seeing a considerable resurgence of interest, specifically in
moving from analysis, description and understanding to modeling and prediction, with a variety
of methodologies being applied to model a wide set of phenomena. The bad news, from the point
of view of practitioners, is precisely the diversity that makes the field such an exciting and
vibrant area of research currently, since the practitioner is faced with the problem of which
methodology to select. It might well be some time before the field sees a period of consolidation
with one or two methods emerging as standard approaches for application in policy analysis and
planning. '

At the same time, we should recognize that different tools are needed for different jobs. Thus,
while a structural equation model of the type described in Section 3.1.3 does not provide us with
link flows, nor an origin-destination matrix, it does allow us to examine some of the implications
of changes in sociodemographic characteristics and/or general changes in the transportation
system (such as increasing congestion levels throughout the system), without the need to resort to
detailed network analysis, while taking into account some important dependencies that are not
well accounted for in other modeling approaches. For some planning and policy studies, this
level of detail would be quite sufficient. In other cases, of course, this type of model would be
quite inadequate.

ENDNOTES

! Some characterize the difference between economists and sociologists as follows: economists
study the choices that people make, while sociologists study why people have no choices.

2 Tt should be noted that with the development of more flexible and powerful discrete choice
models, such as the nested logit model, researchers are now beginning to apply these models
to an interrelated set of choices. For more details, see Section 3.1.4 of the this paper.

3 The AMOS model is described in detail by Kitamura in another paper in this volume, so the
interested reader can consult that paper for more detail than is provided here. Kitamura’s
paper also describes another prototype CPM, called PCATS, which is based on the notion of
time-space prisms developed by Hagerstrand (1970). Again, the reader interested in more
details can consult Kitamura’s paper in this volume.
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asked to differentiate only those in-home activities that could have been substituted for by out-of-
home activities (such as eating, exercising, amusements, etc), while all in-home activities that
could only be done at home were designated as “in-home”.

The Portland portion of the data from the Oregon-Southwest Washington survey has already
stimulated or facilitated a considerable amount of research — see earlier descriptions of work by
Golob (1996), Golob & McNally (1995), Lu (1996), Vaughn et. al. (1997) and Speckman e. al.
(1997), while Principio (1996) used the Raleigh-Durham data in her recently completed study of
lifestyle and travel behavior. Further, Lawton and his staff at METRO Portland, with the
assistance of Cambridge Systematics, Inc., are engaging in the development of a new set of travel
demand models that incorporate trip chaining and daily activity schedules, based on the earlier
work of Ben-Akiva and Bowman (1995).

The availability of datasets containing both travel and activity information will very likely
stimulate and facilitate continuing research and development of activity-based travel models in
the immediate future. ' '

5. DISCUSSION & CONCLUSIONS

This paper examines recent and on-going advances in activity-based travel demand modeling.
The discussion of the advances in activity-based travel modeling is organized in terms of the
methodologies being employed and the phenomena being modeled, and is set in the context of
the long and rich tradition of activity-based travel demand analysis.

The paper finds that advances in activity-based travel demand modeling have been made recently
at a rapid pace, and that this pace is likely to be sustained by current research and development
activities. The paper argues that the recent and current advances are due to a combination of
factors, including (1) technical advances in computer hardware and software, statistics, and
behavioral sciences, (2) institutional factors that highlight the need for improved travel demand
models, and (3) data availability reasons. In addition, the fact that the activity-based approach
has been under development for the past 20 years means that this is a very opportune time to be
moving the field from a focus on description, analysis and understanding, to an emphasis on
modeling and forecasting. In any case, contemporary planning and policy analysis questions
cannot adequately be addressed by existing travel demand forecasting tools.

The overview of recent and current work in activity-based travel modeling provided in this paper
shows that a wide variety of methodologies are being advanced and employed in modeling a
variety of aspects of activity-travel behavior. Some of the methodologies that are being applied
are either new or relatively new to the travel demand modeling field, including computational
process models, structural equation models, and hazard-based duration models, while discrete
choice models (primarily multinomial logit and nested logit models) have previously seen
extensive use in travel demand modeling. At the same time, a wide variety of aspects of travel
behavior are being modeled, including participation in in-home and out-of-home activities,
dependencies among household members, and daily activity-travel patterns. These phenomena
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embarked on a program of research. This program, known as the Travel Model Improvement
Program, addresses the linkage of transportation to air quality, energy, economic growth, land
use and the overall quality of life. The program addresses both analytical tools and the
integration of these tools into the planning process to better support decision makers. This
program has provided a major impetus for the development of new travel forecasting tools and
the improvement of existing tools.

Another institutional factor that has had a major role in the current push for the development of
new approaches to travel demand forecasting is the law suite brought against the Metropolitan
Transportation Commission (MTC) in the San Francisco Bay Area by the Legal Defence Fund of
the Sierra Club and Californians for a Better Environment. This suit, which tied up MTC’s model
development staff for almost 2 years, put planning agencies on notice that their travel forecasting
models could be the subject of very careful scrutiny by environmental groups and others with
particular interests.”

4.3 Data Availability

A third important reason for the recent and continued progress in activity-based travel modeling
is the availability of data sets that are weli-suited to the development of such models.
Specifically, in the United States, MPO’s have been moving in recent years away from
traditional travel surveys, in which respondents are asked “where did you go?”, toward surveys
in which respondents are asked “what did you do ?”. These latter surveys collect information
about activities and the travel undertaken to reach those activities. That is, travel is set in the
context of the daily activities undertaken by the respondent. For this reason, such surveys yield
higher trip rates, especially for short, infrequent trips by non-motorized modes of travel.

The first metropolitan-wide household travel survey in the USA to collect activity information
appears to be that conducted in Boston in 1990 (Stopher, 1992), followed by the survey
conducted in Southern California in 1991. Both of these surveys collected information only on
out-of-home activities, and the related travel, and the survey format was very similar to a
traditional household travel survey, except that the question “where did you go?” was replaced
by the question “what did you do?”. Some recent household travel surveys, however, have
considerably extended the scope of such surveys by collecting information on activity
participation (or time use) both in and out-of-the-home, as well as any travel undertaken to reach
activities. In particular, surveys undertaken recently in Oregon-Southwest Washington, Raleigh-
Durham and San Francisco, all attempted to collect information on all out-of-home activities and
the related travel, as well as selected in-home activities, for a 48-hour period (the 48-hour period
was chosen in order to capture some of the day-to-day variability that earlier activity-based
research showed makes up a significant fraction of the total variability in many aspects of travel
behavior).

In the Oregon-Southwest Washington and San Francisco surveys respondents were asked to
report in-home activities only if they were 30 minutes or longer in duration. However, in the .
Raleigh-Durham survey respondents were asked to report all in-home activities, but they were
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There are three primary reasons for the recent and on-going progress in activity-based travel
modeling; namely, technical reasons, institutional reasons and data availability reasons. Each of
these reasons is discussed in the sections below.

4.1 Technical Factors

From the technical point of view, the major reason for the recent advances in activity-based
travel modeling is the continued rapid development of computer technology, both hardware and
software. Such developments allow researchers to store and process large data sets relatively
easily, estimate models that previously could not be estimated because of the required
computational resources. In particular, enhanced computational capabilities, coupled with the
availability and use of Geographic Information Systems (GIS) to code, store and manipulate geo-
referenced data bases is encouraging researchers to develop models that deal with point-to-point
movements, rather than zone-to-zone movements (see, for example, Speckman et. al., 1997).
Other technical reasons for the recent progress in activity-based travel modeling are advances in
the behavioral sciences and in statistical methodologies.

4.2 Institutional Factors

Some years ago the present author wrote a paper addressing the question “Is travel demand
analysis and modeling in the doldrums?” (Pas, 1990). The conclusion reached in that paper was
that, from a scientific viewpoint, travel demand analysis and modeling was certainly not in the
doldrums and that much interesting research was taking place. On the other hand, that paper
concluded, travel demand analysis and modeling was very much in the doldrums from an
institutional standpoint, since there was little institutional interest in the development of new
travel demand modeling techniques and hence very little funding for research and development.
(At the same time, funding sources were known to be expressing concerns about the relatively
slow rate of progress in the development of activity-based travel forecasting techniques that
could be used in planning and policy analysis. This situation, of course, was a classic “catch-
22”).

If one were to examine the state of travel demand modeling today, from an institutional point of
view, one would have to conclude that travel demand analysis and modeling has experienced the
“winds of change”. In the U.S.A., the Clean Air Act Amendments (CAAA) of 1990 and the
Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991 provided the impetus for the
development of new techniques, through the emphasis these pieces of legislation placed on
policies whose impacts could not be adequately addressed with conventional travel demand
modeling techniques.®

In response to the pressures to develop new and more flexible travel demand models, created by
the Clean Air Act Amendments of 1990 and the Intermodal Surface Transportation Efficiency
Act of 1991, the U.S. Department of Transportation and the Federal Highway Administration, in
cooperation with the Environmental Protection Agency and the U.S. Department of Energy,
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interdependencies and linkages that exist within households. This approach assumes that each
activity-travel pattern has a “skeletal” structure that can be defined by estimable elements. Once
the skeletal structure is specified, it imposes time-space constraints and simplifies the simulation
of the remaining details of the activity-travel pattern. The daily activity-travel pattern is to be
generated by a two-stage procedure in which the skeletal pattern will be generated based on
sociodemographics and then the pattern details will be simulated based on observed probability
distributions.

3.24 Summary

As with-the methodologies section above, this section shows that there is a wealth of recent and
on-going activity-based travel demand modeling research, and that this work encompasses a
wide range of methodologies as well as phenomena. While much of this work deals only with
parts of the overall problem (not the daily or weekly activity-travel behavior of households and
their members), the foundations are rapidly being put in place for the development of a
comprehensive, integrated modeling framework.

4. WHY ARE WE MAKING PROGRESS NOW IN ACTIVITY-BASED TRAVEL
MODELING?

As noted earlier, the activity-based approach to travel demand analysis and modeling has been
under development for the past 20 years, so it is reasonable to ask why this approach has seen
relatively little application to transportation planning practice in the past, and why there is
considerable interest and effort now in developing and applying activity-based travel forecasting
models. The first part of this question has been addressed by others in the past. In particular,
Kitamura (1988) undertook a careful review and assessment of activity-based travel modeling,
with a specific interest in understanding the limited practical applications of the approach up to
that time. He came to the conclusion that while the activity-based approach to travel modeling
could contribute to many areas of transportation planning, there were a number of reasons why
the approach had not been applied more widely to addressing policy and planning problems. The
reasons cited by Kitamura include a resistance to change among practitioners and the lack of
effort by activity analysts to provide the practitioners with readily usable methods, as well as the
perception that activity-based methods are predominantly useful for analyzing the impacts of
non-capital intensive options, which can often be examined without systematic analysis tools.

However, the times have changed, and considerable progress is now being made in the activity-
based approach to travel demand. Specifically, the development of travel forecasting models
founded in the concepts of activity-based travel analysis has gained much momentum in the past
few years. Some of these models are being applied on a prototypical basis in some regions and
we expect that such models will start to be used in transportation planning practice at the leading
MPO’s within the next few years.
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Townsend (1987) developed a framework for the development of such models. However,
modeling these dependencies is particularly difficult, and only recently have researchers begun
tackling this task.

Golob and McNally (1995) recently used the methodology of structural equation models (see
Section 3.1.3) to develop a joint model of out-of-home activity participation and the resultant
travel of male and female couples (married or unmarried) who are heads of households. The
research aimed at identifying the interactions between activity participation and travel and
between the two individuals being modeled. This research, using the data collected in the
Portland area during the recent Oregon-Southwest Washington Household Activity Diary Survey
(see Section 4.3 below), demonstrates the existence of, and provides quantitative estimates of the
effects of out-of-home activity participation on travel behavior and the interdependencies
between the male and female household heads in their activity participation and travel.

In addition to the work of Golob and McNally (1995) discussed above, we note here the on-
going work of Lawson (1996) , which (as mentioned above) aims at capturing interpersonal
dependencies in the context of in-home versus out-home activity trade-offs. The reader should
also note that Wen (1996) aims at incorporating interpersonal interdependencies into his stop and
tour generation model (see Section 3.2.3 below).

3.2.3 Daily Activity-Travel Patterns

There are a number of efforts currently underway to model daily activity-travel behavior, in
addition to the work of Ben-Akiva and Bowman (1995) that was described in Section 3.1.4
above. For example, Wen’s (1996) dissertation research aims at developing an operational
econometric model system for generating complex daily activity-travel patterns. Specifically, his
model deals with stop and tour generation and the assignment of stops to tours, as well as the
location for each stop and the mode for each tour, in an integrated model system. This research
also attempts to incorporate interpersonal dependencies in the model system.

One of the concepts that is integral to the AMOS model (see Section 3.2.1 above) is that of using
microsimulation techniques to predict a traveler’s adaptation from the baseline (or current)
activity-travel pattern. There are two directions being followed currently to develop these
baseline daily activity-travel patterns for all the households in a metropolitan area, given the data
from a household activity-travel survey and the sociodemographics of all the households in the
area (the latter can be generated from census data using a technique such as that of Beckman et.
al., 1997). Kitamura (1995) is developing a technique in which the characteristics of the set of
activities is generated sequentially using a Markovian approach. The individual’s daily activity-
travel pattern is formulated as a triple of vectors comprising the set of activities engaged by type,
the set of durations for the activities, and the set of locations of the activities engaged.

Vaughn et. al. (1997) are approaching the same problem as Kitamura with the goal of generating
the daily activity-travel patterns of households and their members in such a way as to replicate
the distribution of activity travel patterns at the census block group level and recognizing the
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home and out-of-home time allocated to discretionary activities. The model is formulated as a
doubly-censored Tobit model, while requiring only the assumption that one of the activities is
engaged in on the day in question (i.e., the person engages in some discretionary activity, either
at home, out-of-home, or both.) The explanatory variables in the model are work schedules,
commute characteristics, as well as residential, household and personal attributes. A weekly time
use data set from the Netherlands is used in the empirical analysis, and the data are treated as
repeated daily measurements. An error component is introduced into the model to deal with the
heterogeneity in the data set comprising repeated measures of daily time use for each of the
respondents. The model is estimated using a non-parametric approach, employing mass points.

The estimation results show that individuals who work on a given day tend not to engage in
discretionary out-of-home activities. However, those who work more hours per week do tend to
spend a larger fraction of their discretionary time out-of-home. Individuals who spend more time
commuting spend more time on in-home discretionary activities. Gender does not, by itself, seem
to affect in-home/out-of-home time allocation, but child rearing does. Larger households tend to
be more in-home oriented, while income and number of vehicles and flexible work hours are not
significant explanatory variables with respect to the allocation of time to in-home versus out-of-
home activity participation.

Lawson (1996) is conducting dissertation research aimed at modeling the decision to undertake
an activity in-the-home or out-of-the-home and explicating the factors that contribute to the
decision. She has hypothesized that the explanatory factors include household composition, work
characteristics, age composition and lifestyle status. Conceptually, the analysis is based on a
utility maximization process, identified in the “new home economics” and applied to the
allocation of household resources. Several different choice models will be estimated using the
data from the Portland portion of the 1994/95 Oregon-Southwest Washington Household
Activity Diary Survey. Lawson plans to capture interpersonal and interactivity effects in her
model.

As a third example of recent research in which the relationships between in-home and out-of-
home activity participation have been studied, we refer to Lu’s (1996) work, which was
described in more detail in Section 3.1.3 above. This work, using a structural equation model
relating sociodemographics, activity participation and travel, showed clear dependencies between
in-home and out-of-home activity participation, as well as the effect of sociodemographics on the
decision of whether to spend more time at-home or out-of-home. Thus, for example, an increased
number of children in the household was found to increase the time spent on at-home activities
and simultaneously decrease the time spent on out-of-home activities. Therefore, the relationship
between trip-making and number of children in the household is a rather complex one.

3.2.2 Interpersonal Dependencies
One of the tenets of the activity-based approach to travel modeling is that there are relationships

between the activity-travel patterns of members of the same household. Early work at TSU
Oxford showed clearly the existence and importance of interpersonal dependencies, and
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3.1.6 Summary of Recent Methodological Directions in Activity-Based Modeling

The discussion in this section demonstrates that in recent years there has been a considerable
amount of work in the development and application of methodologies for activity-based travel
demand modeling. This research and development work is rapidly moving the activity-based
approach to travel demand modeling from one in which the primary focus is on descriptive
analysis and understanding to one in which forecasting models are being developed and applied.

Some of the methodologies used in the activity-based approach to travel modeling are rather
new to the field (e.g., computational process models), while others have seen some previous use
in travel demand modeling (hazard-based duration models and structural equation models), and
yet others are very familiar to the field (discrete choice models). In addition to providing an
overview of the new methodologies, this section also points out that existing modeling
approaches are being applied with the insights derived from the rich information base developed
by activity-based researchers over the past 20 years.

While there are a number of methodologies being pursued at the present time, in the future
researchers will no doubt combine the most appropriate methodologies to develop complete
model systems. For example, Hensher (1996) and his colleagues are about to embark on a major
research project in which they will develop an activity-based travel demand model system which
takes into account travel time budgets, and the duration, sequence and chaining of activities. In
this project, the researchers will develop competing risk duration models with generalized logit
models to capture the diversity of activity choices and their sequence and duration.

3.2 Phenomena Being Modeled in Recent Activity-Based Travel Models

Many different phenomena are being modeled in current activity-based travel demand modeling
work. In some cases, the methodology being used to model a particular aspect of urban activity-
travel behavior does not fit into one of the areas discussed in the previous section, in other
instances the methodology fails into one of the areas above and the work cited here also appears
in the previous section. The purpose of the present section is to give the reader a sense of the
range of phenomena being modeled, with a particular emphasis on those phenomena not
mentioned in the methodologies section above.

3.2.1 In-Home and Out-of-Home Activity Participation: Trade-Offs and Relationships

The activity-based approach to travel demand modeling focusses attention on the need to be able
to model which activities will be undertaken in the home and which will be undertaken outside
the home (and thus generate travel), as well as the dependence between time spent at-home and
out-of-home. A number of recent activity-based modeling studies have addressed these issues.

Kitamura et. al. (1996) formulate a discrete-continuous choice model of time allocation to 2
types of discretionary activities, based on random utility maximization. The model deals with in-
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transport analysis, it is only relatively recently that we see the development and application of
this type of model in the context of activity-based travel demand modeling.

Both Hamed and Mannering (1993) and Bhat (1995) develop and apply discrete-continuous
choice models to model post work activity participation behavior, while Kitamura et. al. (1996)
develop and apply a discrete-continuous choice model to model the allocation of time to in-home
and out-of-home discretionary activities (see Section 3.2.1 below). Hamed and Mannering
develop a hazard-based duration model to examine home-stay duration after the end of the work
day. They estimate a separate logit model of activity type choice, and linear regression equations
for travel time to and from the out-of-home activity and the out-of-home activity duration.

Bhat (1995) develops a discrete-continuous model of post home-arrival activity participation
behavior in which three inter-related choices are modeled simultaneously, namely (1) choice of
next out-of-home activity, (2) home stay duration and (3) duration of the out-of-home activity.
The model is estimated, using full-information maximum likelihood, for the case of post-home
arrival from work behavior. Bhat’s work advances the state-of-the-art in discrete-continuous
models in that this is apparently the first case in which full information maximum likelihood has
been applied to a discrete-continuous model when the discrete choice is polychotomous. Bhat’s
methodology also extends previous work by dealing with two continuous outcomes, not one, and
it overcomes some of the limitations of Hamed and Mannering’s framework.

3.1.5 Eahancement of Existing Travel Demand Models

One approach to improving existing travel demand models, in the short-term, is to make
incremental changes to these models based on what we have learned about travel behavior from
the activity-based travel research of the past 20 years. One can point to a number of influences
that the activity-based approach has had on the development of trip-based, four-step models over
the years. The improved specification of travel demand models, especially the incorporation of
variables describing household structure (or what is often referred to as “lifecycle”) is a good
example of the influence of activity-based travel research on traditional travel demand models.

A very good recent example of the use of activity-based research results in making incremental
improvements to existing travel demand models is to be found in the current round of model
development by the Metropolitan Transportation Commission (MTC) in the San Francisco Bay
Area, based on data collected in the 1990 household travel survey conducted in the Bay Area. In
this effort, Purvis and his colleagues (Purvis, et. al., 1996) used research on time use to motivate
a modification to their otherwise traditional non-work trip generation model. The new non-work
trip generation model includes work travel time as an explanatory variable. The idea being that
commuters who spend more time on the work commute have less time available to participate in
non-work activities. Estimation results confirmed this hypothesis and work travel time was found
to have a significant negative effect on non-work trip generation. Purvis et. al. (1996) interpret
work travel time as a measure of accessibility, thus arguing that improvements in accessibility
for the work trip will lead to increases in non-work trip generation and vice versa.
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Lu’s research shows that complex relationships among socio-demographics, activity participation
and travel behavior do exist, and can be captured by the model structure employed in this
research. Specifically, Lu and Pas (1997) reach the following overall conclusions. First,
significant relationships among socio-demographics, activity participation and travel behavior
can be simultaneously captured by the estimated model, and most of the estimated direct effects
correspond with the historical findings. Second, travel behavior can be explained better by
including activity participation in the model. Third, relationships between in-home and out-of-
home activity participation do exist and can be estimated and interpreted. Finally, by examining
the direct, indirect and total effects in the model system, we can better capture and understand the
relationships among socio-demographics, activity participation and travel behavior, thereby
demonstrating the usefulness of structural equations models in modeling the complicated
relationships among sociodemographics, activity participation and travel behavior.

3.1.4 Discrete and Discrete-Continuous Choice Models

One approach to modeling some of the complexities in travel behavior emphasized by the
activity-based approach to travel demand modeling is to use discrete choice or discrete-
continuous choice models. Although originally developed and applied in the context of a trip-
based framework, discrete choice models have been recently applied to sets of interrelated
activities and travel. For example, Ben-Akiva and Bowman (1995) have recently developed a
model in which they consider the daily activity-travel pattern as a set of tours. Each tour is
assumed to have a primary activity and destination — the primary activity being the major
motivation for the tour. Further, tours are sub-divided into primary and secondary tours. The
daily activity-travel pattern is thus characterized by a primary activity, primary tour type, and the
number and purpose of secondary tours. The tour models, which are conditioned on the choice of
a daily pattern, include the choice of time of day (one of four discrete time periods), destination
(discrete traffic analysis zones), and mode. The model is operationalized and estimated as a
nested logit model, and could be used by an MPO with the capability of estimating a nested logit
model. However, the model is quite limited in its spatial and temporal resolution.

Recent work by Bhat (1997) extends the usefulness of discrete choice models by developing a
joint model of work mode choice and number of non-work stops during the work commute.
Mode choice is modeled using an unordered choice model and number of stops is modeled using
an ordered response formulation. The model has been applied to data from the 1990 Boston Area
survey, and the results demonstrate the importance of accommodating the inter-relationship
between mode choice to work and number of non-work activity stops in the work commute. The
results of policy tests with the model show that commuters who make non-work stops on the
work commute are unlikely to be drawn away from the drive alone mode.

Another interesting, relatively recent development in activity-based travel demand modeling
results from the recognition that discrete choice models, as such, cannot deal with an important
variable of interest in the activity-based approach, namely the duration of an activity, because it
is continuous in nature. Although it is almost 10 years since Mannering and Hensher (1987)
published a review article on discrete/continuous econometric models, and their application to
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socio-demographics, activity participation and travel behavior, at the individual level, is
developed, estimated and interpreted. A complex set of interrelationships among the variables of
interest is estimated simultaneously using the structural equation model methodology
implemented in LISREL (Joreskog and Sorbom, 1995).

An overview of the model developed and estimated by Lu is shown in Figure 1. This figure
shows that activity participation (measured by the duration of activity participation in each of 4
in-home and out-of-home activity categories) and travel behavior (measured by the number of
trips, number of trip chains, daily travel time, and percent of trips by car) are endogerous to the
model (i.e., they are estimated within the model), while socio-demographic characteristics are the
exogenous variables (or inputs) in this model. The figure also illustrates that the model allows for
the direct effect of socio-demographics on travel behavior as well as for the indirect effect via
activity participation (since socio-demographics can affect activity participation which in turn
can affect travel behavior). The combination of the direct and indirect effects is known as the
total effect of one variable on another in a structural equation model.

Figure 1: A Model of Sociodemographics’, Activity Participation® and Travel®
Model Overview

Socio-demqgraphjcs
Fescccacaseracscce ; ---------------- 1-
: | In-home Activity Pattern | :

t |

Out-of-home Activity Pattern

:___“.________,__I ___________________ :

Travel Behavior

' Socio-demographic characteristics included in this model represent household and personal
characteristics. Household characteristics include number of workers, number of children,
number of vehicles and income, while personal characteristics include age, gender,
employment status and license holding.

2 Activity participation is measured by the duration of in-home and out-of-home activities in
each of four activity categories.

3 Travel behavior is measured by the number of trips, number of trip chains, daily travel time,
and percent of trips by car.

After: Lu and Pas (1997)
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activity scheduling as a continuous decision-making process, although further development is
needed to deal with some important technical issues.

Bhat (1996a) has recently developed a hazard-based duration model of shopping activity duration
on the trip home from work, while at the same time significantly extending the methodology of
hazard-based duration models.> Bhat (1996b) has also recently developed a multiple durations
(i.e., competing risks) model that extends the existing state-of-the art considerably. Thus, there
are a number of recent examples of the application of hazard-based duration models to activity
duration modeling and examples of methodological developments as well.

3.1.3 Structural Equation Models

Structural equation models have been applied in a number of areas of the social sciences for quite
some time. This methodology has seen relatively little application in travel demand modeling in
spite of its ability to facilitate the modeling of a large number of interrelated variables. Up until
very recently, all the work in the application of structural equation models to travel demand
modeling was conducted by Golob, who pioneered the use of this methodology in travel demand
modeling, and his collaborators (see, for example, Golob and Meurs 1987; Golob 1990a, 1990b).
However, other researchers have recently started using the structural equation models
methodology to develop activity-based travel demand models (Fujii et. al, 1996; Lu, 1996), and
Golob has extended the range of applications to which he has applied this methodology to
include activity-based travel demand modeling (Golob, 1996; Golob, Bradley and Polak, 1996;
Golob and McNally, 1995).

The current applications of structural equation models to travel demand make use of the
methodology to capture some of the complex relationships considered important in the activity-
based approach to travel demand. Fujii ez. al. (1996), for example, use the methodology of
structural equation models to model commuters’ time use and travel after work hours using data
collected in the Osaka-Kobe metropolitan area. Their model shows that of a 10-minute time
“savings” for the commute trip, slightly more than 7 minutes will be used for in-home activities,
thus bringing into question the idea of a constant travel time budget.

Golob and McNally (1995) develop a joint model of the out-of-home activity participation and
travel of male and female couples (whether they are spouses or not) who are heads of
households (see Section 3.2.2 below for more detail on this work). Golob (1996) uses the
structural equation modeling approach to model demand for activity participation and mobility,
and he includes one category of in-home activity (namely, work) in the model. The model is
formulated to allow for a number of hypothesized behavioral phenomena including: travel
demand derived from activity participation, time budget effects, mobility demand (activity
participation affects vehicle ownership), and accessibility (vehicle ownership affects activity
participation).

One recent application of the structural equation modeling methodology to activity-travel
relationships is the work of Lu (Lu, 1996; Lu and Pas, 1997). In this work, a model relating
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accident, and vehicular delay at international border crossings) and travel behavior. Applications
referenced by Hensher and Mannering in the latter area include the length of time travelers delay
their departure from work in order to avoid congestion (Mannering and Hamed, 1990), the time
travelers stay at home between activities requiring trips (Mannering et. al., 1992 and Hamed et.
al., 1992), and the time until acceptance of a new tolled roadway (Hensher and Raimond, 1992).

The general idea of a hazard-based duration model is that it tries to model the conditional
probability of “failure” at time t (i.e., the probability that the event of interest terminates at time
t), given that failure has not occurred prior to this time (i.e., that the event has not terminated
prior to time t).* Thus, for example, one might try to model the probability that a worker finds a
job at time t (ending the unemployment period), given that s/he is unemployed up to this time.

‘The most relevant application of the hazard-based duration model in activity-based travel
demand modeling is in connection with modeling the duration of activities and home-stay
duration (time between returning home and leaving on another trip). In this connection, the most
pertinent work is that of Neimeier and Morita (1996), Mannering and his associates (Mannering
et. al., 1992; Hamed et. al., 1992), Ettema et. al. (1995) and Bhat (1996a, 1996b). However,
another possible use of hazard-based duration models is in modeling the time until the next
activity of a particular type occurs. Thus, with the appropriate data, one could model the time
between, say, shopping activities. -

As noted earlier, Mannering et. al. (1992) and Hamed et. al. (1992) have applied hazard-based
duration models to model the length of time a traveler spends at home before making another
trip. Specifically, this work deals with the amount of time a commuter spends at home after
arriving home from work before leaving home to take part in another out-of-home activity.
Neimeier and Morita (1996) developed a model for the duration of particular trip-making
activities based on gender. The activities they studied include: household and family support
shopping, personal business, and free time. Neimeier and Morita found no significant differences
between the durations of men and women for the free-time and personal business activities, but
gender was a very significant explanatory variable in the case of the household and family
support shopping activities, with women being more likely than men to have longer durations for
household and family support shopping activities. Hazard-based models have also been used to
study the time that a car is stationary, with respect to being able to predict the probability of a
cold-start (Ponnoluri, 1995).

A recently developed duration model, developed by Ettema et. al. (1995), deals with both
activity duration and activity choice by using what is known as a “competing risk” hazard model.
The authors estimated the model using data collected from a small sample of students, through
an interactive computerized data collection procedure called MAGIC, which they have
developed to investigate activity scheduling behavior (Ettema ez. al., 1993). The estimated model
parameters show that spatio-temporal constraints such as time of day, opening hours and travel
time, play an important role in activity scheduling. Activity duration and type were also found to
be dependent on the history of the activity-travel pattern and the traveler’s priorities. The authors
conclude that the estimated model performs satisfactorily, and holds promise for describing
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could be used to forecast commuters’ short-term responses to the type of TCM measures being
considered in the MWCOG region. Six policies were included in the study, as follows: (1)
parking pricing, (2) improved bicycle and pedestrian facilities, (3) a combination of (1) and (2),
(4) parking pricing with employer commuter voucher, (5) congestion pricing, and (6) a
combination of (4) and (5).

This project used a 3-phase survey to collect information about the respondents’
sociodemographic characteristics, their commute characteristics, their time use for a 24-hour
period, and their stated response to the set of TCM measures listed above. The stated response
section of the survey was customized to each commuter’s work or school trip, in terms of the
commute distance and travel time, and respondents were asked how they would respond to each
TCM in the context of their activity and travel behavior on the previous day. The responses were
coded into one of eight categories, as follows: do nothing, change departure time to work, change
mode to carpool, change mode to transit, change mode to walk, change mode to bicycle, work at
home, and other (e.g., long term changes). The stated response data was used to “train”
(calibrate) a neural network to predict commuters’ basic responses to the TCM measures, using
sociodemographics, land use, transportation network and TCM characteristics. The calibrated
AMOS model was applied to a small sub-sample of commuters from the 1994 MWCOG
household travel survey, to predict the impacts (including the percent of cold starts) of the
alternative TCMs. .- .

In addition to AMOS, there are a number of other CPM’s that have recently been developed or
are currently under development. These models include SCHEDULER (Gérling ez. al.,1989;
Golledge et. al., 1994), SMASH (Ettema et. al., 1995b), and PCATS (Kitamura, 1996).
Furthermore, in his development of an activity-based CPM of travel behavior, Vause (1995) is
making a valuable contribution by developing techniques to assist in the formulation of the rule
base used in the CPM.

3.1.2 Hazard-Based Duration Models

Hazard-based duration models were originally developed for, and applied to, problems in the
fields of medical science and industrial engineering, but they have also seen extensive
application in economics (primarily labor economics) and marketing. Since the late 1980’s,
hazard-based duration models have also been applied to a number of transportation-related
phenomena, including travel demand. Hensher and Mannering (1994) provide a thorough review
of the important concepts in hazard-based duration modeling and examples of the application of
these models to transportation phenomena. They argue that hazard-based duration models
provide the transport modeler with a powerful tool and they note that there have been
surprisingly few applications of these models in transportation modeling, especially since
transportation modelers routinely deal with duration-related phenomena.

Hensher and Mannering (1994) include in their review example transportation applications in
the areas of accident analysis (time between accidents), car ownership modeling (time between
households’ vehicle purchases), traffic operations (time to restore a freeway to capacity after an
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developed by Newell and Simon (1972). A production system model attempts to capture the
decision-making process using a set of rules in the form of condition-action pairs.

The key point about CPM’s is that such models attempt to represent explicitly the process used
by the individual to make a decision, whereas in our conventional approaches to travel demand
modeling, e.g., discrete choice models, the decision-making process is implicit in the model
formulation. Computational process models allow for a variety of decision-making strategies,
and allow the decision-making strategy of an individual to be different in different
circumstances, while recognizing the human’s limited information processing ability. Golledge
et. al. (1994) note that CPM’s have been developed in an attempt to ... replace the utility
maximizing framework with behavioral principles of information acquisition, information
representation, information processing, and decision making”. They also point out that ...
appropriate statistical techniques for estimating and calibrating CPM’s are yet to be defined”, but
it should be noted here that some of the rules in a production system model can be based, for
example, on discrete choice models.

Girling et. al. (1994) discuss production system and computational process models and review
the application of such models to activity scheduling behavior (including activity type, duration,
sequencing, location and mode of travel). A number of CPM’s are reviewed in their paper,
including those dealing with information acquisition and representation in the context of
navigation and route choice, as well as in the context of interrelated activity and travel decisions.
CARLA (Jones, et. al., 1983) and STARCHILD (Recker et. al, 1986a, 1986b) are the two early
examples of such CPM-type models. CPM’s have been applied primarily to the scheduling and
rescheduling problems. In these models, the set of activities to be performed is generally taken as
given. Recently, Pas (1996) suggested that CPM’s might also be useful for the development of
activity generation models if such models are to attempt to represent the process of activity
generation.

One CPM has recently been applied in the U.S.A. at the metropolitan area level, in prototypical
form. This model, known as AMOS (Activity-Mobility Simulator), is a component of the SAMS
(Sequenced Activity-Mobility Simulator) model (Kitamura et. al., 1996). The latter model was
conceived by the RDC, Inc team in the FHWA-sponsored project “Redesigning the travel
demand forecasting process” (RDC, 1993). The SAMS model is an integrated simulation model
of land-use, sociodemographics, vehicle transactions, activity-travel behavior, network
performance and air quality. The AMOS model, which is at the heart of the SAMS model, is
described briefly below as an example CPM that has been applied to a real-world policy analysis
situation.’

The AMOS model is an activity-based CPM that focusses on travelers’ adaptation to policy
changes. A prototype version of the AMOS model, designed specifically to deal with short-term
responses to transportation control measures (TCMs), has been developed and applied in the
Washington, DC area in a project sponsored by the FHWA and the Metropolitan Washington
Council of Governments (MWCOG) (see RDC, 1995, for a detailed description of this project
and the results obtained). The development and application of the AMOS model in the .
Washington, DC area was designed to demonstrate how an activity-based travel demand model
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This research provides a very solid base on which the next generation of travel demand models is
currently being built, as we now have a much better understanding of the phenomenon we are
trying to model.

The interested reader can consult a number of review articles for additional, different
perspectives on the activity-based approach to travel demand modeling, ranging from the early
review prepared by Damm (1983), to the more recent reviews prepared by Kitamura (1988),
Jones et. al. (1990), and Axhausen and Girling (1992). For a recent discussion of the
contribution of the activity-based approach to transportation policy analysis see Jones (1995),
and for another perspective on the activity-based approach see the paper by Kurani and Lee-
Gosselin (1996) in this volume. For an assessment of recent developments in household activity
scheduling and the prospects for the future, see Kurani and Kitamura (1996).

3. RECENT AND CURRENT DIRECTIONS IN ACTIVITY-BASED TRAVEL
DEMAND MODELING :

In this section of the paper we discuss recent and on-going advances in activity-based travel
modeling, This review is not intended to be comprehensive, but it does attempt to cover all the
relevant directions being followed. The purpose of the review is to illustrate the directions being
taken, and to show that advances are being made, not to provide a detailed account of recent and
current research in any of the areas discussed here. This review is organized in terms of the
methodologies being used and the phenomena being modeled, and we have attempted to include
all the relevant methodologies being used and the phenomena being modeled, while providing a
representative sample of work in each area covered.

3.1 Methodological Advances in Activity-Based Travel Modeling

One can readily identify a number of methodological areas in which advances have recently been
made, and continue to be made, in the area of activity-based travel demand modeling. Some of
these methodologies have been applied to travel demand modeling only recently, while other
methodologies have seen application over a longer time period, but the phenomena to which they
are being applied currently are new. The newer methodologies include computational process
models, hazard-based duration models, and discrete-continuous choice models, while discrete
choice and structural equation models are now being applied to a wider set of phenomena than in
the past. These areas of methodological advancement are discussed in the sub-sections below.

3.1.1 Computational Process Models

One of the most interesting, and potentially powerful, new directions in activity-based travel
modeling is the development and application of what are usually termed computational process
models (CPM’s). Such models are computerized implementations of what are known as
production system models, which trace their origins to models in the psychology literature
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that appear to produce acceptable forecasts. Proponents of this approach believed that one needed
to have a good understanding of the behavioral phenomenon being modeled in order to develop
sound predictive models. Much of the early work on the activity-based approach to travel
demand analysis used in-depth interviews, with small samples, in an attempt to gain a good
understanding of urban travel behavior. In particular, the HATS methodology (Jones, 1979),
essentially a gaming simulation, was used very successfully by the researchers at TSU, Oxford,
in trying to gain a better understanding of household level travel decisions and the constraints
within which those decisions are made.

An early paper in the activity-based travel modeling literature by Heggie (1978), entitled
“Putting Behaviour into Behavioural Choice Models”, argued that urban travel behavior is a
complex phenomenon that could not be suitably represented in the discrete choice models
(specifically logit models) that were gaining considerable popularity at the time the foundations
of the activity-based approach were being put in place. Essentially, Heggie argued that while the
discrete choice modeling framework provides a sound and rigorous approach to modeling the
choice of an alternative from aset of available alternatives, the behavior being modeled at that
time, primarily mode choice for the work trip, was not the correct behavioral phenomenon. In
other words, a good tool was being used to address the wrong problem?. Most importantly, the
discrete choice models that were being developed at that time, and that have dominated the field
until recently, were not designed to be able to take account of dependencies among trips and
between people, nor to account for constraints on activity participation and travel behavior.

The activity-based approach to travel demand forecasting can be considered the only real
scientific revolution or paradigm shift, in Kuhnian (1970) terms, in the history of the
development of travel demand forecasting models. The shift from aggregate to disaggregate
models that took place starting in the 1970’s was a shift in statistical technique rather than a shift
in the paradigm and thus can be considered an incremental change in the approach to travel
demand modeling (for further discussion of this point, see Pas, 1990).

The activity-based approach to travel demand analysis encompasses many theoretical concepts
and methodologies. However, the themes of the approach can be clearly discerned in the large
body of activity-based travel demand research. In 1985 Pas described these themes as follows:
(a) analysis of demand for activity participation (and the analysis of travel as a derived demand),
(b) the scheduling of activities in time and space, (c) the constraints (spatio-temporal and
interpersonal) on activity and travel choice, (d) the interactions between activity and travel
choices over the day (or longer time period), as well as interactions between individuals, and (e)
the structure of the household and the roles played by the household members. To this list, we
should now add dynamics and adaptation to change as themes of the activity-based approach.
Furthermore, as Kurani and Lee-Gosselin (1996) note, time use is becoming the focus of much
activity-based research. (For an introduction to time use studies and their relationship to travel
demand modeling, see Pas and Harvey, 1991, and for a more recent review, see Pas, 1996).

As noted above, much of the past effort in the activity-based approach to travel demand analysis
and modeling has been devoted to developing a better understanding of the phenomenon of urban
travel behavior, with less effort devoted to the problem of modeling and predicting this behavior.
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ready for implementation at a time when the planning and policy analysis issues of the day
cannot be suitably addressed by the existing, trip-based, four-step travel demand model.

The objective of this paper is to identify and document recent advances in activity-based travel
demand modeling, while setting these advances in the context of the considerable history of
development in activity-based approaches to travel modeling. The review of recent advances in
activity-based travel modeling is organized in terms of the methodologies being developed and
used and the phenomena being modeled. The review is not intended to be exhaustive in terms of
the works described and cited, but it is intended to include a representative sample of recent and -
on-going work in the field in order to demonstrate the type and the extent of the advances being
made.

The rémainder of the paper is organized as follows. In the second section, we provide some
background on the activity-based approach to travel demand analysis and modeling — readers
already familiar with the development of this approach can readily skip this section. The third
section of the paper provides an overview of recent advances in activity-based travel modeling,
while the fourth section provides a brief discussion of the reasons that the activity-based
approach to travel demand modeling has seen considerable progress of late. The final section of
the paper presents some concluding thoughts.

2. BACKGROUND

The activity-based approach to travel demand analysis is founded on the well-known and long-
accepted idea that travel is generally not undertaken for its own sake but rather to participate in
an activity at a location that is separated from one’s current location. The idea that travel is a
derived demand has been accepted by travel demand modelers ever since it was first articulated
by Oi and Shuldiner (1962) in their seminal work on urban travel demand. However, traditional
travel demand models pay only lip service to this fundamental idea by segmenting trips by trip
purpose and modeling the trips for different purposes separately.

The activity-based approach to travel demand analysis and modeling traces its roots to the
seminal work on urban travel demand analysis undertaken in the mid to late 1970’s at the
Transport Studies Unit (TSU) at Oxford University under the leadership of Ian Heggie, working
under a grant from the Social Sciences Research Council (Jones, et. al., 1983). The activity-
based approach was founded on the work undertaken previously by the sociologist and planner,
F. Stuart Chapin Jr., at the University of North Carolina at Chapel Hill (Chapin, 1974), and by
the geographer Torsten Hagerstrand at Lund University in Sweden (Hagerstrand, 1970, 1972).
Kurani and Lee-Gosselin (1996) note that Chapin’s work contributed by identifying patterns of
behavior across time and space, while Hagerstrand’s work delineated systems of constraints on
activity participation in time-space. It is important to note the clear influence of fields other than
economics in the development of the activity-based approach to travel demand analysis'.

The development of the activity-based approach to travel demand analysis is characterized by a
desire to understand the phenomenon of urban travel, not merely to develop predictive models
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ABSTRACT

This paper presents an overview of recent and on-going advances in activity-based travel demand
modeling, organized in terms of the methodologies employed (including computational process
models, structural equation model systems, and hazard-based duration models) and the
phenomena belng modeled (including in-home and out-of-home activity participation,
interpersonal dependencies, and daily activity-travel patterns). The paper sets the overview of the
recent and on-going advances in activity-based travel modeling in the context of the long and
rich history of activity-based travel analysis, which was first proposed about 20 years ago as an
alternative to the trip-based modeling framework and the discrete choice, utility-maximizing
models that were being incorporated into the trip-based travel demand modeling framework at
that time.

This paper finds that substantial progress has been made recently, and continues to be made, in
advancing from activity-based travel analysis (with an emphasis on descriptive analysis and
understanding), to activity-based travel forecasting models that can be used effectively for
addressing contemporary policy and planning issues. The considerable recent effort and progress
in activity-based travel modeling is attributed to techmcal institutional and data availability
factors.

1. INTRODUCTION

Twenty years ago, researchers at the Transport Studies Unit at Oxford University began seminal
work in the development of an alternative travel demand modeling paradigm to the trip-based,
four step modeling approach that was first developed during the early metropolitan land-
use/transportation studies conducted in the U.S.A. in the mid to late 1950’s. The alternative
paradigm became known as the activity-based approach because it is based on the well known
and long accepted idea that travel is a demand that arises through people’s needs and desires to
participate in activities. After many years of development, the activity-based approach to travel is

79



78



Supernak, J. (1990) “A dynamic interplay of activities and travel: Analysis of time of day utility
profiles.” in P. Jones (ed.) Developments in Dynamic and Activity-Based Approaches to
Travel Analysis. Aldershot, U.K.: Gower.

Tonn, B.E. (1984a) “A sociopsychological contribution to the theory of individual
time-allocation.” Environment and Planning A. v. 16. pp. 201-23.

Tonn, B.E. (1984b) “The cyclic process decision-heuristic: An application in time-allocation
modeling.” Environment and Planning A. v. 16. pp. 1197-220.

Vovsha, P. (1996) “Trip matrix construction by trip chaining.” Submitted to the 75th Annual
Meeting of the Transportation Research Board. Paper 961306. January 7-11.

van Wissen, L.J., T. Golob and H.J. Meurs (1991) “A simultaneous dynamic travel and activities
time allocation model.” Working Paper 21. Berkeley, CA: University of California
Transportation Center. September.

Wrigley, N. (1986) “Quantitative methods: the era of longitudinal data analysis.” Advances in
Human Geography. v. 10. pp. 84-102.

77



Niemeier, D. A. and J.G. Morita (1995) “Duration of trip-making activities by men and women:
A survival analysis.” Forthcoming in Transportation Research.

Pas, E.I. (1988) “Weekly travel-activity behavior.” Transportation. v. 15. pp. 89-109.

Pas, E. (1990) “Is Travel demand analysis and modelling in the doldrums?” in P. Jones (ed.)
Developments in Dynamic and Activity-Based Approaches to Travel Analysis. Aldershot,
U.K.: Gower. '

Pas, E.I. and A.S. Harvey (1991) “Time Use Research and Travel Demand Analysis and
Modeling.” Presented at the 6th International Conference on Travel Behavior. October, 18.

Pas, E.I. and F.S. Koppelman (1987) “An examination of the determinants of day-to-day
variability in individuals’ urban travel behavior.” Transportation. v. 13. pp. 183-200.

Prince, H. (1978) “Time and Historical Geography”, in Carlstein, T., D. Parkes and N. Thrift
(eds.) Timing Space and Spacing Time: Making Sense of Time. v.1. London: Edward Arnold
Ltd.

Purvis, C.L., M. Iglesias, and V. Eisen (1996) “Incorporating Work Trip Accessibility in
nonwork trip generation models in the San Francisco Bay Area.” Paper submitted to the 75th
Annual Meeting of the Transportation Research Board. Paper 960786. January 7-11.

Recker, W.W., M.G. McNally and G.S. Root (1983) “Application of pattern recognition theory
to activity pattern analysis.” In Carpenter, S. and P. Jones (eds.) Recent Advances in Travel
Demand Analysis. Aldershot, U.K.: Gower.

Recker, W.W., M.G. McNally and G.S. Root (1986a) “A model of complex travel behavior: Part
1: Theoretical development.” Transportation Research A. v. 20A. pp. 307-18.

Recker, W.W., M.G. McNally and G.S. Root (1986b) “A model of complex travel behavior:
Part 2: An cperational model.” Transportation Research A. v. 20A. pp. 319-30.

Root, G.S and W.W. Recker (1983) “Toward a dynamic model of individual activity pattern
formulation.” In Carpenter, S. and P. Jones (eds.) Recent Advances in Travel Demand
Analysis. Aldershot, U.K.: Gower.

Sands, G. and S.M. Smock (1994) “Religious identification, church attendance and the trip to
church.” Transportation Quarterly, v.48 n, 2 pp. 185-98.

Schultz, G.W. and W.G. Allen Jr. (1996) “Improved modelling of non-home based trips.” Paper
submitted to the 75th Annual Meeting of the Transportation Research Board. Paper 90599.
January 7-11.

Shiftan, Y. and E. Ruiter (1996) “A practical approach to estimate trip chaining.” Submitted to
the 75th Annual Meeting of the Transportation Research Board. Paper 91189. January 7-11.

Simon, H.A. (1978) “Information processing theory of human problem solving.” In Estes, W.K.
(ed.), Handbook of learning and cognitive processes. v. 5. Hillsdale, New Jersey: Erlbaum.

Simon, H.A. (1990) “Invariants in human behavior.” Annual Review of Psychology. v.41.
pp-1-19.

Sinnott, J.D. (1989) “A model for solution of ill-structured problems: Implications for everyday
and abstract problem solving.” In Sinnott, J.D. (ed.) Everyday Problem Solving: Theory and
Applications. New York: Praeger.

Solberg, E.J. and D.C. Wong (1991) “Family time use: Leisure, home production, market work
and work related travel.” The Journal of Human Resources. v. 27. pp. 485-510.

Strathman, J.G., K.J. Dueker and J.S. Davis (1994) “Effects of household structure and selected
travel characteristics on trip chaining.” Transportation. v. 21 pp. 23-45.

76



Kitamura, R. (1988) “An evaluation of activity-based travel analysis.” Transportation. v. 15.
pp- 9-34.

Kitamura, R. (1984) “A model of daily time allocation to discretionary out-of-home activities
and trips.” Transportation Research B. v.18B pp. 255-66.

Kitamura, R. (1983) “Serve passenger trips as a determinant of travel behaviour.” In Carpenter,
S. and P.M. Jones (eds.) Recent Advances in Travel Demand. Aldershot, UK: Gower.

Kitamura, R. and K.G. Goulias (1991) Midas: a Travel Demand Forecasting Tool Based on a
Dynamic Model System of Household Demography and Mobility. Institute of Transportation
Studies, University of California: Davis, CA.

Kitamura, R. and M. Kermanshah (1983) “Identifying time and history dependencies of activity
choice.” Transportation Research Record 944, pp. 22-9.

Kitamura, R., K. Nishii and K. Goulias (1990) “Trip chaining behaviour by central city

: commuters: A causal analysis of time-space constraints.” In Jones, P. (ed.) Developments in
Dynamic and Activity-based Approaches to Travel Analysis, Aldershot, UK: Avebury.

Kunert, U. (1994) “Weekly mobility of life cycle groups.” Transportation. v. 21. pp. 271-88.

Kurani, K.S., T. Turrentine and D. Sperling (1994) “Demand for Electric Vehicles in Hybrid
Households: An Exploratory Analysis.” Transport Policy v.1 n. 4

Kurani, K.S. and R. Kitamura (1996) Recent Developments and the Prospects for Modeling
Household Activity Schedules. A report prepared for the Los Alamos National Laboratory,
Institute of ‘Transportation Studies, University of California, Davis CA.

Lawton, K. (1996) “Activity And Time Use Data For Activity-Based Forecasting”. Resource
Paper, Activity-based Travel Forecasting Conference, New Orleans, June 2-5, 1996

Leach, E. (1966) “Two essays concerning the symbolic representation of time in anthropology”
in Rethinking Anthropology. London: Atholone Press.

Lee-Gosselin, M.E. (1990) “The dynamics of car use patterns under different scenarios: A
gaming approach”, In Jones, P. (ed.) Developments in dynamic and activity-based
approaches to travel analysis, Aldershot, UK: Avebury.

Lee-Gosselin, M.E. (1995) “The scope and potential of interactive stated response data
collection methods.” Presented at the Conference on Household Travel Surveys: New
Concepts and Research Needs. Irvine, CA. March 12-15. Also in press in the
Transportation Research Record. Transportation Research Board: Washington, D.C.

Mahmassani, H.S. (1988) “Some comments on activity-based approaches to the analysis and
prediction of travel behaviour.” Transportation v. 15. pp. 35-40.

Manke, B., B.L. Seery, A. C. Crouter and S.M. McHale (1994) “The three corers of domestic
labor: Mother’s, father’s and children’s weekday and weekend housework.” Journal of
Marriage and Family. v. 56. pp. 657-68.

Maslow, A (1970) Motivation and Personality. New York: Harper and Row.

McCalla, G. and P.F. Schneider (1979) “The execution of plans in an independent dynamic
microworld.” In the Proceedings of the Sixth International Joint Conference on Artificial
Intelligence: Tokyo. v.1 pp. 553-55.

Mitchell, R. and C. Rapkin (1954) Urban Traffic—A Functzon of Land Use. New York:
Columbia University Press.

Munshi, K. (1993) “Urban passenger travel demand estimation: A household activity approach.”
Transportation Research A. v. 27A. pp. 423-32.

75



1. For each Public Use Micro Area (PUMA) construct the multi-way distribution of
attributes from the corresponding PUMS.

2. A two-step iterative proportional fitting (IPF) procedure is used to estimate
simultaneously the multi-way distributions for each census tract within a PUMA,
such that each distribution satisfies the marginal distributions for the census tract (as
defined by aggregate census tables) and has the same overall correlation structure as
the PUMS-based multi-way distribution. This IPF procedure can be interpreted as the
constrained maximum entropy estimate of the multi-way distribution given the
known information and the available PUMS data.

3. Individual households are then randomly drawn from the full multi-way
distribution for each census tract.

The TRANSIMS procedure is relatively straightforward to implement and appears to perform
well in validation tests to date [Beckman, et. al., 1995]. In particular, it clearly performs better
than either drawing households directly from the PUMS multi-way distribution (i.e., without
“filtering” this distribution through the census tract marginal distributions by means of the two-
step IPF procedure) or drawing households directly from the tract marginals (i.e., a simplified
version of the Wilson and Pownall procedure). While more operational experience is obviously
required with population synthesis methods, the general thrust exemplified by the TRANSIMS
approach appears to be well founded: use a “full information™ approach which accounts for
multi-way correlation among the attributes being synthesized.

4.2  Population Updating

Once the base year population has been provided to the model, either through a survey sample or
a synthesis procedure, this population must be “updated” each time step within the simulation
run. The nature of this updating obviously depends on the attributes involved, the processes
being simulated, the size of the simulation time step, etc. Assuming, however, that one is
simulating household processes over a number of years, in one year time steps, demographic and
socio-economic processes which need simulating as part of the updating process may well
include:

aging;

births and deaths;

marriages and divorces;'?

other changes in household structure (adult children leaving the home, etc.);
non-family household formation and dissolution;

changes in education level;

changes in employment status (entry/exit to/from the labor market, change in job
location and/or type, etc.);

13 Generally these terms are used to represent the more generic processes of “couples” forming
and dissolving, whether or not actual marriages and divorces occur.
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® changes in residential location;
® changes in automobile holdings (types and numbers of vehicles); etc.

With the exception of aging, which is a completely deterministic accounting process, each of
these processes require a sub-model of some sort. Demographic and household structure
attributes are generally handled using very simple probability models: either fixed transition rates
based on empirical data (e.g., fertility rates for women by age group), or simple parametric
probability functions (e.g., MIDAS uses simple logit models to determine household type
transition probabilities). In all such cases, Monte Carlo simulation methods are used to generate
household-specific “events” (birth of a child, etc.) on a household-by-household and year by year
basis.

Treatment of employment status, residential location and automobile holdings varies far more
widely across models, depending on their application. Each of these can be a significant part (or
even the primary focus) of the behavioral modeling component of the microsimulation (see
Section 5). Alternatively, if the application permits, one or more of these might be handled in
terms of “transition probabilities” in the same way as the demographic variables discussed above.

As with synthesizing procedures, limited experience exists, at least within the travel demand
forecasting community, with demographic/socio-economic updating methods. For examples of
specific methods used to date, see, Miller, et. al. [1987], Kitamura and Goulias [1991], Goulias
and Kitamura [1992], and Oskamp [1995]. All of these examples should, I believe, be treated as
being illustrative and experimental in nature rather than in any way definitive in terms of “the”
method to use. Considerable experience with demographic forecasting obviously exists among
demographers. Traditional demographic forecasting, however, does not attempt to work at the
fine spatial scale required by our travel demand forecasting applications. Our challenge is to
adapt existing methods and/or develop new ones which can operate reliably at the census
tract/traffic zone level required for travel demand forecasting.

5. EXAMPLE APPLICATIONS

Much of the travel-related microsimulation modeling which has been undertaken to date has
occurred in application areas other than activity-based modeling per se. These application areas
include: auto ownership, residential mobility, and dynamic network assignment. Sub-section 5.1
briefly reviews representative models from these application areas, with emphasis on their
relationship to activity/travel demand modeling. Section 5.2 then briefly discusses examples of
activity-based microsimulation modeling.

5.1  Miscellaneous Application Areas.
1. Microsimulation of auto ownership. Some of the earliest applications of microsimulation in

the transportation field involved dynamic modeling of auto ownership (e.g., Barnard and
Hensher [1982] and Daly [1982]). Behavioral modeling of auto ownership has almost always
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occurred as a “stand alone” activity, outside of the “normal” activity/travel demand modeling
process.!* Within the travel demand modehng process, auto ownership has typically been treated
as just one socio-economic “exogenous” input to the demand process. For some purposes this
may be adequate, in which case a “transition probability” treatment within a microsimulation
modeling system would be adequate. Many current policy issues, however, (notably concerning
emissions and energy use) relate in no small way to household decisions concerning the number
and types of vehicles which they own, as well as on the interactions between vehicle holdings
and (auto) travel demand. Thus, a strong case exists for including explicit models of household
automobile choice within the overall travel demand modeling process [Miller and Hassounah,
1993].

2. Microsimulation of housing markets and residential mobility. Many of the
microsimulation models developed to date fall into this general category. Early work includes
that undertaken by Wegener [1983], Mackett [1985, 1990] and Miller, et. al. [1987]. This
continues to be an active area for research efforts, including work by Spiekermann and Wegener
[1993] and Oskamp [1995].1

Given the central role which lifecycle stage and household structure play in determining
residential mobility, these models typically deal in detail with population and household
synthesis and updating -- issues of considerable importance to activity-based models (and ones
which have already been dealt with in Section 4). In addition to the technical issues relating to
synthesis and updating already discussed, note that the discussion to this point in the paper has
been relatively indifferent to the “unit of analysis” within microsimulation models. In residential
mobility modeling it has long been recognized that both households and persons (with the later
being further sub-divided into workers, non-workers, etc.) must be maintained within the
modeling system, given that some decisions are inherently household-level in nature (e.g.,
residential choice), while others inherently occur at the level of the individual (e.g., change jobs),
with interactions between both levels continuously occurring'® (e.g., the decision to change jobs
may have ramifications for household income levels and hence the suitability/affordability of the
current residential location; the decision on whether/where to move may be influenced by the
impact which the move would have on commuting times and costs). As a result, such models
generally maintain both households and persons (and mappings between the two) as explicit
elements of their database. This dual representation presumably will prove useful to activity-
based models, both as they move to more household-level formulations and as they become more
integrated with residential mobility models within more comprehensive microsimulation
frameworks.

¥ MIDAS [Goulias and Kitamura, 1992], discussed below, represents a notable exception in this
regard.

'* Work in this area is also proceeding by a collaborative team of Canadian researchers from the
University of Toronto, McMaster University, Laval University and the University of Calgary.
This project is in a very preliminary stage at time of writing and has yet to publish results.

' See, for example, Birch, er. al. [1974].
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In addition, of course, housing market models are intended to forecast medium- to long-term
evolution of the spatial distribution of the residential population, another key input into activity-
based models. Considerable debate currently exists, particularly within the United States,
concerning “land use - transportation interactions”, the nature and extent of “induced demand”,
etc. Development of credible, integrated models of residential (and employment) location
processes and activity/travel demand seems to me to be a particularly important step towards
investigating the medium- to long-term impact of both land use and transportation system
policies and hence towards contributing in a analytically sound way to this extremely important
policy debate.

3. Microsimulation of auto route choice and network performance. As mentioned briefly in
Section 3, many current and emerging road network assignment procedures are microsimulation-
based (e.g., Barrett, et. al. [1995], Hu and Mahmassani [1995], Mahmassani, ef. al. [1994]). A
detailed review of these procedures is well beyond the scope of this paper. Three points to note
about these models, however, are:

i) As has already been discussed Section 3, the input requirements of these network
microsimulation models may in some instances drive the design criteria for activity-based
travel forecasting models. TRANSIMS is perhaps the best example of this point, in that
the network performance/emissions modeling needs are clearly in this case driving the
overall system design. '

ii) The “interface” between the activity-based models and the network models generally
does not simply consist of the outputs from the one becoming the inputs to the other.
Typically, dynamic route assignment procedures simultaneously determine route choice
and trip departure time choice (given assumptions about desired arrival times).
DYNASMART perhaps best typifies operational capabilities in this regard. Thus, these
models “intrude” into at least one component of the activity-based modeling domain: the
“micro-scheduling” of trips. Again, this may well have design implications for activity-
based models to the extent that they are intended to be integrated with network
microsimulation models.

iii) Most current network microsimulation models appear to have been developed with short-
run (and, in some cases, real-time) forecasting applications in mind, often specifically
relating to ITS applications. Whether these models are well suited for medium- to long-
term forecasting applications is, I believe, an unanswered question at this point in time.
Issues include the level of detail of network representation often required by these models
(e.g., are we able to specify the traffic signal settings and offsets twenty years into the
future, as may be required by some models), as well as the match between network model
precision (e.g., second by second calculations of individual vehicles' performance) and
the accuracy of the activity/travel demand model's predictions (even with
microsimulation!), given the inevitable uncertainties associated with medium- to long-
term forecasting.
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5.2 Activity-Based Microsimulation Models

Given the inherently disaggregate nature of activity-based models, as well as the fact that these
models typically incorporate some level of dynamics, one might argue that a large portion of the
extensive activity-based modeling literature should be included in this section.!” This has not
been attempted here. Rather emphasis has been placed on including models which emphasize
the connection between activity modeling and travel demand forecasting in at least a quasi-
operational manner, and which do this within an explicit microsimulation framework.

Bonsall [1982] provides a very early example of the application of microsimulation to the
problem of predicting commuters' participation in a proposed ridesharing program. Although
very specialized in nature, the model is noteworthy given its time period of development, as well
as for the clarity with which the paper discusses general issues of microsimulation modeling.

Axhausen [1990] reports on a considerable “tradition” in Germany of activity-based
microsimulation modeling of destination and mode choice, tracing back to Kreibich's initial work
in the late 1970's [Kreibich, 1978, 1979]. Much of this German work has been generally
inaccessible to North American audiences since, with the exception of Kreibich's papers, most of
it has only been published in German. Axhausen's contribution was to combine an activity chain
simulation model (which had been the focus of the work of Kreibich, et. al.) with a mesoscopic
traffic flow simulator.”® This paper is noteworthy in at least two respects. First, it represents an
early attempt to link an activity-based model directly to a network assignment model -- clearly an
essential step in developing a true activity-based travel demand forecasting capability. Second,
the decision to use a mesoscopic rather than microscopic traffic simulator provides a useful
counterpoint to the general North American trend of leaping directly to the extreme micro level
for this later type of model.

MIDAS (Microanalytic Integrated Demographic Accounting System) [Kitamura and Goulias,
1991; Goulias and Kitamura, 1992, 1996] represents an extremely important milestone in the
development of transportation-related microsimulation models. Developed for the Dutch
government, MIDAS is an operational microsimulation-based forecasting tool. Starting with a
nationwide sample of households obtained from the Dutch Mobility Panel, the model has two
main components: a socio-economic and demographic component which simulates household
transitions, including births, deaths, household type changes, as well as changes in persons'
employment status, personal income, driver's licence possession and education; and a “mobility
component” which simulates auto ownership, trip generation and modal split. Although the

'7 Very explicitly simulation-based activity-based models such as STARCHILD [Recker, et. al.,
1986a, 1986b] and the simulation model developed by Ettema, et. al. [1993] particularly come to
mind.

'* Mesoscopic network models generally work at the level of the individual vehicle, but make use
of much more simplified models of vehicle performance than the microscopic models discussed
above. For a detailed discussion of the potential merits of mescopic models, see Miller and
Hassounah [1993].
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application is somewhat atypical (i.e., predicting overall national travel levels rather than intra-
urban trip-making), the model contains most of the attributes of the activity-based travel
forecasting microsimulation modeling “paradigm” presented in Section 2 of this paper. In
particular, the model's treatment of the demographic and socio-economic updating problem is
very strong.

In 1992 FHWA commissioned four groups (RDC, Inc., Caliper Corporation, MIT, and the
Louisiana Transportation Research Center — LTRC) to propose new modeling systems to
replace the conventional four-stage system. It is noteworthy that two of the four groups (RDC
and LTRC) proposed activity-based microsimulation designs, while a third (MIT) proposed a
disaggregate activity-based approach which certainly could be implemented within a
microsimulation framework [Spear, 1994]. Further, both RDC's SAMS (Sequenced Activity-
Mobility System) and LTRC's SMART (Simulation Model for Activities, Resources and Travel)
postulated an integrated, comprehensive modeling system beginning with land use and flowing
through activity/travel decisions to dynamic assignment of vehicles to networks (and hence
calculation of congestion, emissions; etc.).

Since the FHWA study, a prototype of AMOS (Activity-Mobility Simulator), the central
component of the proposed SAMS system, has been developed and used in Washington, D.C. to
evaluate alternative TDM strategies [RDC, 1995]. Within the context of this paper, AMOS
represents an example of an activity-based travel microsimulator. As currently implemented, it
represents a stand-alone tool for analyzing a specific type of short-run transportation policies
which is not currently tied to either a demographic simulator (as in the case of MIDAS) or a
network simulator (as in the case of Axhausen's model). More generally, however, it represents a
potential stepping-stone towards a more comprehensive microsimulation system such as SAMS
which would include these other microsimulation components, among others.

Finally, TRANSIMS [Barrett, et. al., 1995] represents by far the most ambitious attempt to date
to develop a comprehensive microsimulation travel demand forecasting model. The TRANSIMS
program is well documented in the literature, as well as in other presentations at this conference,
and so no attempt will be made in this paper to provide a complete description of the model.
From the point of view of this paper it is perhaps sufficient to observe that the TRANSIMS work
is at the present time both defining much of the state-of-the-art in microsimulation modeling and
challenging other researchers to develop their own thoughts and models. Regardless of the
extent to which TRANSIMS per se ever becomes an operational planning model, the impetus
which it has provided to the development of microsimulation models and to the evolutlon of
travel demand modeling in general is of considerable importance.

6. RESEARCH & DEVELOPMENT ISSUES AND DIRECTIONS

With the exception of MIDAS (and, possibly, AMOS), virtually all travel demand-related
microsimulation models developed to date must be classed as “prototypes”, designed to
demonstrate the feasibility of microsimulation and/or to investigate very specific policy
questions. Moving microsimulation “out of the laboratory” and into operational practice will

166



require considerable additional research and development. Some of the key issues, in my
opinion, which need to be addressed in this R&D effort include the following.

1. Continued development and testing of population synthesizing and updating methods.
Just as conventional four-stage models depend fundamentally on the population and employment
inputs provided to them, so the microsimulation systems envisioned within this paper depend on
the population demographic and socio-economic “inputs” to the behavioral components of the
model. While the TRANSIMS procedure for population synthesis appears very attractive (and
emerges out of at least twenty years of experience in the literature with related but simpler
methods), clearly much more operational experience is required before such a method can be
considered a proven tool. Updating methods similarly have clearly been demonstrated to be
feasible but require much further incremental experimentation, improvement and “optimization”.

2. Determination of appropriate levels of aggregation. Even in a microsimulation model,
aggregation inevitably occurs. Aggregation can occur in space (typically through the use of
zones as the spatial unit of analysis, even when modeling individual decision-makers within
these zones), time (primarily in terms of the time step used to move the model through simulated
time: a model which operates on a one-year time step is temporally more aggregate than one
which steps through time on a month by month basis), attributes (no matter how detailed the
model's description of an individual, there is always some point beyond which two individuals
will be considered “identical”; individuals are, however, exactly that, and by treating them as
identical we are, in fact, introducing some amount of aggregation into the analysis'®), and
behavior {e.g., perhaps in a given model all types of non-grocery shopping — everything from
buying shoes to buying a new car — might be aggregated into a single activity category).

A major rationale for the disaggregate modeling approach is the minimization of aggregation
bias. In the theoretical development of our disaggregate models it is often easy to pretend that
these models truly operate at the level of unique individuals acting within their actual individual
choice contexts. It must be recognized, however, that any operational model will inevitably
reach some finite limit of disaggregation (where this limit may be defined by data availability,
theoretical insight, methodological capabilities, computational feasibility, and/or application
requirements), beyond which aggregate “homogeneity” assumptions are inevitably required.
This is neither good nor bad, but rather simply a fact of model building. The key point is to
recognize this fact and to make intelligent decisions concerning where finer levels of
disaggregation are both required and achievable, and where more “aggregate” representations
either can be used because of the nature of the problem (relative homogeneity does exist, system
state estimates are robust with respect to this component of the model, etc.) and/or must be used
due to inherent limitations in our modeling capabilities.

Over and above a general concern with finding appropriate levels of disaggregation in our
microsimulations, specific issues include:

' Section 4 discussed this same issue in terms of the use of a sample of individuals, in which
case each sampled individual inevitably ends up represented an aggregate group of “similar” -
individuals within the model.
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i) Treatment of space. Many activity-based models developed to date are surprisingly
“aspatial”. If such models are to be practical travel demand forecasting tools they must
ultimately be able to generate auto, transit, walk, etc. trips from point to point in space.
Or is it zone to zone in space? Considerable uncertainty currently exists about what level
of spatial disaggregation is required to support forecasting requirements for emissions
analysis, etc. Nor is it currently clear what level of spatial disaggregation is likely to be
supportable with respect to data and computational capabilities, even given modemn
Geographic Information Systems (GIS), etc.

ii) Treatment of time. Different urban processes operate within very different time frames.
Residential and employment location processes operate over periods of years, typically
involving brief periods of intense activity (e.g., looking for a new home or job), followed

"possibly by decades of inactivity. Most demographic process operate on approximately a
yearly scale. Activity/travel decisions, however, occur more typically within daily or
weekly time frames. Tailpipe emissions from a vehicle depend critically on the second-
by-second decisions of the vehicle's driver.

Within each of these components of the overall travel demand process decisions need to
be made concerning the best time step to use in modeling the given component. Is
second-by-second simulation of vehicle performance really necessary or can a longer
time step (say 5 seconds) be used? Is the day or the week the “fundamental” step in
modeling household activity and travel dynamics (or is hour-by-hour or minute-by-
minute simulation required)? Can one year time steps by used to simulate residential
mobility decisions (and if so, how does one handle the “microdynamics” of the housing
search process which typically occurs over a period of a few weeks or, at most, months)?

These questions become even more problematical as one attempts to bring these model
components into a comprehensive modeling system. It is easy to speak about the need
for integrated land use - transportation models, for example, but how does one actually
integrate these models, given their very different time frames?

iii) Selection of attributes. Models vary in terms of the definition and detail of the attributes
of persons, households, etc. being modeled. Decisions concerning these attributes
obviously affect, among other components of the model, the nature of the population
synthesis and updating procedures required to generate and update these attributes over
time. Tradeoffs may well often occur between the ability of the synthesis/updating
procedures to reliably provide a given attribute and the relative importance of the
attribute within the behavioral model.

3. Linkages among model components. As has been mentioned at various points throughout
this paper, linkages between location choice, activity/travel decisions and network assignment
and performance models represent both a trend and a desirable feature in microsimulation model
development. In particular, analysis of the full range of possible impacts of a given policy may
often require a relatively comprehensive modeling system, given the wide range of possible
short-run and long-run responses available to individuals and households in many cases.
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While conceptually attractive, comprehensive microsimulation models obviously bring with
them a host of model design issues, not the least of which is the computational feasibility of such
models. It is to be expected that many modelers will continue to develop individual models for
various components of the overall process, both as a means for best making progress in the
development of these components, and as a means for analyzing problems directly addressable
by such models. At the same time, other modelers will continue with the task of developing
comprehensive modeling systems, often with simplified versions of the current state-of-the-art
component models. Both types of activities obviously are mutually reinforcing and are to be
encouraged.

4. Demonstration of the statistical properties of microsimulation models. Almost all
microsimulation models include stochastic elements. Surprisingly little attention seems to have
been paid to the statistical properties of these models.?* This may partially be due to the
preliminary nature of most models: when one is busy trying to show that the thing simply works
at all one may be forgiven for not worrying what the average outcome of a hundred replications
of the same model run might look like. It may also reflect a reluctance on the part of modelers to
come to grips with the issue, given both the magnitude of the computational effort to generate a
single model run and the complexity of the outcome of the simulation experiment -- i.e., a
massively multi-dimensional data structure defining the final system state.

Come to grips with this issue, however, we must, for the output of any single run of a stochastic
model is simply one random “draw” from the unknown distribution of possible outcomes. The
representatives of this single outcome (and hence its usefulness for planning purposes) is also by
definition unknown. In “classical” stochastic simulations, this problem is resolved by executing
many replications of the run, each one of which generates additional information concerning the
underlying unknown distribution of outcomes. This process continues until one has generated a
sufficient number of observations to be able to say statistically meaningful things about the
distribution of possible outcomes -- in particular to provide reliable estimates of the means and
variances of the final system state.

Much work is required to address this issue in the case of activity-based travel demand
microsimulation models. Considerable experimentation is needed to determine the statistical
properties of both individual model components and of overall modeling systems — in particular
to develop guidelines concerning when replications need to be undertaken and, if performed, how
many are generally required. As Axhausen [1990] points out, many standard methods exist for
reducing internal variation within simulation model runs, and the usefulness and appropriateness
of using such methods must be investigated. Finally, thought must be given to how one does
“average” over a set of simulated outcomes in cases of such complexity and high dimensionality
as are typical of our applications.

S. Demonstration of computational feasibility. One should never make the mistake of
underestimating the computational intensity of microsimulation models. In addition to requiring

20 Axhausen [1990] is one of the few authors who spends more than a sentence or so on the issue.
Many do not raise the issue at all.
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considerable amounts of CPU time, the memory and disk storage requirements of a large
microsimulation model are enormous. Early microsimulation models quickly bumped up against
computational limits and/or made significant design comprises in order to maintain
computational feasibility. With continuing rapid expansion of the computing power cost-
effectively available to both researchers and planners, the definition of what is computationally
feasible is being upgraded almost daily. Indeed, the fact that this paper is being presented at this
conference is due almost entirely to the extraordinary computing power which is now routinely
available to us (relative to even a few years ago), as well as to the universally held expectation
that this trend of increasing computing power will continue into the foreseeable future.

Nevertheless, the computational challenges associated with large-scale microsimulations are
significant, to say the least. This is particularly the case for population-based (as opposed to
sample-based) models. The magnitude of the problem also grows as we move towards more
integrated, comprehensive models (e.g., combined models of residential and employment
location choice, activity/travel and network assignment).

Ultimately, all of the issues discussed above come together and interact with the issue of
computational feasibility in a classic engineering design problem involving tradeoffs between
“cost” and “performance”. Every increase in model disaggregation, every extension of its
comprehensiveness, every improvement in its statistical reliability comes at a cost in computer
time, memory and storage. Conversely, at any point in time, current computational capabilities
establish upper bounds in terms of what is cost-effectively doable within the model.

One can think of disaggregation level, extent of comprehensiveness, statistical reliability and
computational requirements (among undoubtedly others) as fundamental attributes or dimensions
of microsimulation model design. We have only become to explore the design “space” defined
by these dimensions. At this point in time we have only the faintest notions of where feasible
regions lie within this space, let alone where “optimal operating points” might be found.

Above all else, what is required is considerably more experience in building and using such
models. The TRANSIMS project is providing invaluable experience in this regard, but we
should not be counting on any one project to provide all the answers. The more experience
which is gained by more people in more applications within more computing environments, the
better our models will ultimately be — and the more likely it will be that we will end up
developing the models which we actually need and can use. In any modeling application, a
certain amount of “empirical wisdom” is required before the model can be reliably applied. Such
empirical wisdom can only be achieved through doing: by trying, by failing, by experimenting,
and, throughout the process by learning and thereby eventually (hopefully) succeeding.

ACKNOWLEDGMENTS

Research associated with this paper has been funded by a Natural Sciences and Engineering
Research Council (Canada) Collaborative Project Grant.

170



REFERENCES

Axhausen, K. [1990] “A Simultaneous Simulation of Activity Chains and Traffic Flow”, in
Jones, P. (ed.) Developments in Dynamic and Activity-Based Approaches to Travel Analysis,
Aldershot: Avebury, pp. 206-225.

Barrett, C. , K. Berkbigler, L. Smith, V. Loose, R. Beckman, J. Davis, D. Roberts and M.
Williams [1995] An Operational Description of TRANSIMS, LA-UR-95-2393, Los Alamos,
New Mexico: Los Alamos National Laboratory.

Beckman, R.J., K.A. Baggerly and M.D. McKay [1995] “Creating Synthetic Baseline
Populations”, paper submitted to Transportation Research, LA-UR-95-1985, Los Alamos,
New Mexico: Los Alamos National Laboratory.

Birch, D., R. Atkinson, S. Sandstrom and L. Stack [1974] The New Haven Laboratory: A Test-
Bed for Planning, Lexington, Mass.: Lexington Books.

Bonsall, P.W. [1982] “Microsimulation: Its Application to Car Sharing, 7’ ransportation Research
A, Vol. 15, pp. 421-429.

Clarke, M.C., Keys, P. and Williams H.C.W.L. [1980] “Micro-analysis and Simulation of Socio-
Economic Systems: Progress and Prospects”, in Bennett, R.J. and N. Wrigely (eds.)
Quantitative Geography in Britain: Retrospect and Prospect, London: Routledge and Kegan
Paul.

Clarke, M.C., Keys, P. and Williams H.C.W.L. [1981] “Microsimulation in Socio-Economic and
Public Policy Analysis” in Voogd, H. (ed.) Strategic Planning in a Dynamic Society, Delft:
Delftsche Uitgevers Maatschappij BV, pp. 115-125.

Ettema, D., A. Borgers and H. Timmermans [1993] “Simulation Model of Activity Scheduling
Behavior”, Transportation Research Record 1413, pp. 1-11.

Goulias, K.G. and R. Kitamura [1992] “Travel Demand Forecasting with Dynamic
Microsimulation”, Transportation Research Record 1357, pp. 8-17.

Goulias, K.G. and R. Kitamura [1996] “A Dynamic Model System for Regional Travel Demand
'Forecasting”, chapter 13 in Golob, T., R. Kitamura and L. Long (eds.) Panels Jor
Transportation Planning: Methods and Applications, Kluwer Academic Publishers,
forthcoming.

Hu, T.Y. and H.S. Mahmassani [1995] “Evolution of Network Flows under Real-Time
Information: Day-to-Day Dynamic Simulation Assignment Framework”, 7; ransportation
Research Record 1493, pp. 46-56.

Ingram, G.K., J.F. Kain and J.R. Ginn [1972] The Detroit Prototype of the NBER Urban
Simulation Model, New York: National Bureau of Economic Research.

Kitamura, R. and K.G. Goulias [1991] MIDAS: A Travel Demand Forecasting Tool Based on a
Dynamic Model System of Household Demographics and Mobility, Project bureau Integrale
Verkeer-en Vervoerstudies, Ministerie van Verkeer en Waterstaat, the Netherlands.

Kreibich, V. [1978] “The Successful Transportation System and the Regional Planning Problem:
An Evaluation of the Munich Rapid Transit System in the Context of Urban and Regional
Planning Policy”, Transportation, Vol. 7, pp. 137-145.

Kreibich, V. [1979] “Modeling Car Availability, Modal Split and Trip Distribution by Monte-
Carlo Simulation: A Short Way to Integrated Models”, Transportation, Vol. 8, pp. 153-166.

171



Mackett, R.L. [1985] “Micro-analytical Simulation of Locational and Travel Behaviour”,
Proceedings PTRC Summer Annual Meeting, Seminar L: Transportation Planning Methods
London: PTRC, pp. 175-188.

Mackett, R.L. [1990] “Exploratory Analysis of Long-Term Travel Demand and Policy Impacts
Using Micro-Analytical Simulation”, in Jones, P. (ed.) Developments in Dynamic and
Activity-Based Approaches to Travel Analysis, Aldershot: Avebury, pp. 384-405.

Mahmassani, H.S., T.Y. Hu and S. Peeta [1994] “Microsimulation-Based Procedures for
Dynamic Network Traffic Assignment”, Proceedings of the 22nd European Transport
Forum, PTRC, Seminar H: Transportation Planning Methods: Volume II, pp. 53-64.

Miller, E.J., P.J. Noehammer and D.R. Ross [1987] “A Micro-Simulation Model of Residential
Mobility”, Proceedings of the International Symposium on Transport, Communications and
Urban Form, Volume 2: Analytical Techniques and Case Studies, pp. 217-234.

Miller, E.J. and M.I. Hassounah [1993] Quantitative Analysis of Urban Transportation Energy
Use and Emissions: Phase I Final Report, report submitted to Energy, Mines and Resources
Canada, Toronto: Joint Program in Transportation, University of Toronto.

Oskamp, A. “LocSim: A Microsimulation Approach to Household and Housing Market
Modelling”, paper presented to the 1995 Annual Meeting of the American Association of
Geographers, Chicago, March 15-18, PDOD Paper No. 29, Amsterdam: Department of
Planning and Demography, AME - Amsterdam Study Centre for the Metropolitan
Environment, University of Amsterdam.

RDC, Inc. [1995] Activity-Based Modeling System for Travel Demand F orecastzng, DOT-T-96-
02, Washington, D.C.: U.S. Department of Transportation.

Recker, W.W., M.G. McNally and G.S. Root [1986a] “A Model of Complex Travel Behavior:
Part I -- Theoretical Development”, Transportation Research A, Vol. 20A, No. 4, pp. 307-
318.

Recker, W.W., M.G. McNally and G.S. Root [1986b] “A Model of Complex Travel Behavior:
Part I -- An Operational Model”, Transportation Research A, Vol. 20A, No. 4, pp. 319-330.

Spear, B.D. [1994] New Approaches to Travel Demand Forecasting Models, A Synthesis of Four
Research Reports, DOT-T-94-15, Washington, D.C.: U.S. Department of Transportation.

Spiekermann, K. and M. Wegener [1993] “Microsimulation and GIS: Prospects and First
Experience”, paper presented at the Third International Conference on Computers in Urban
Planning and Urban Management, Atlanta, Georgia, July 23-25.

Wegener, M. [1983] The Dortmund Housing Market Model: A Monte Carlo Simulation ofa
Regional Housing Market, Arbeits Paper Number 7, Institut fuer Raumplanung, Universitaet
Dortmund, Dortmund.

Wilson, A.G. and C.E. Pownall [1976] “A New Representation of the Urban System for
Modelling and for the Study of Micro-level Interdependence”, Area, Vol. 8, pp. 246-254.

Van Aerde, M. and S. Yager [1988a], “Dynamic Integrated Freeway/Traffic Signal Networks:
Problems and Proposed Solutions”, Transportation Research 4, Vol. 22A, No. 6, pp. 435-
443.

Van Aerde, M. and S. Yager [1988b], “Dynamic Integrated Freeway/Traffic Signal Networks: A
Routing-Based Modeling Approach”, Transportation Research A, Vol. 22A, No. 6, pp. 445-
453.

172
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SUMMARY OF WORKSHOP ONE: ACTIVITY AND TIME USE DATA
NEEDS, RESOURCES AND SURVEY METHODS

MARTIN LEE-GOSSELIN JOHN POLAK
Laval University, Quebec Imperial College, London
Objectives

The workshop set out to address the three key questions posed by Peter Stopher in his opening
address to the conference. In the context of the workshop these were interpreted as:

1. What elements of the activity-based perspective to data collection are both desirable and
immediately available and what steps are needed to bring these elements into practice in the short
term?

2. What are the potential areas of application of activity-based data collection methods over the
next 2 to 5 years and what opportunities and constraints are likely to influence the evolution of
practice within this time frame?

3. What steps are needed in terms of dissemination, training and research in order to promote the
integration of activity-based methods into the mainstream of transportation analysis?

The workshop participants comprised practitioners at MPO, State and Federal level, consultants
specialising in data collection, as well as those with a more general background in transportation
modelling, academics and other researchers. Whilst the level of interest in activity-based methods
was high, few practitioners had direct experience of applying these methods themselves and so
understandings and expectations regarding the current status and future potential of the methods
varied widely.

A particular difficulty surfaced in the opening session when it was discovered that a significant
number of those present were unfamiliar with the fundamental differences between activity-based
and trip-based survey instruments in current use. As the second session was on the succeeding day,
it was possible, thanks to the quick action of several consultants and practitioners, to assemble and
present a sample of recent instruments, which then served as examples in the remaining discussions.

General Issues
In addition to the broad issues raised by Peter Stopher, the contributions by the discussants Kay

Axhausen and Ken Cervenka highlighted two further important issues that provided a backdrop to
the deliberations of the workshop.
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® The need to recognise that the complexity of the data which we would wish to collect and use
is increasing (due to both new modelling requirements and the increased complexity of the
policy environment). This raises important issues regarding assessing and improving the quality
of data collection and about the optimal trade-off between quality and quantity in data collection.

@ The need to recognise that the priorities and practices of transportation planning authorities vary
greatly as do the resources and expertise available at the local level. New methods developed and
training/dissemination activity undertaken should be sensitive to these variations. This means
finding ways of facilitating some authorities in making a transition from 4-step to activity-based
modelling whilst also providing mechanisms to support other authorities that currently undertake
little or no formal modelling work in adopting the activity-based approach anew.

General Characteristics and Status of Current Activity-Based Data Collection Methods

Drawing on the diversity of background and experience of the participants, and the examples of
instruments presented, the workshop attempted to clarify the characteristics and status of existing
activity-based methods. The view was that activity-based data collection methods are defined as
much by the use to which the data are put as by the method of collection per se. However,
particularly in the case of travel demand data, the workshop was able to identify some broad
characteristics that were felt to distinguish activity-based approaches. These included:

® A focus on the relationship between travel and the activities generating the demand for travel.
This is a subtle but important difference. For example, whereas in a conventional (trip-based)
approach a respondent might be asked to recall all the trips they made yesterday and the purpose
of each trip, in an activity oriented approach they would be asked to recall the activities in which
they participated and how they travelled between these activities.

® Developing naturally from the focus on activities, is a strong emphasis on issues of the
sequencing and scheduling of behaviour. The activity based perspective emphasises the overall
structure of activity/travel relations, both spatial and temporal.

® The emphasis on timing in turn leads to a concern with the dynamics of behaviour in terms of
the relationship between different elements of behaviour within a day, the relationship of
behaviour on different days and the effect of a wide range of changes in factors (socio-
demographic, economic, technological or regulatory) on behaviour in the longer term.

® A final feature identified was an emphasis on household and institutional constraints as factors
influencing travel behaviour. Just as trip making is viewed as part of a wider pattern of activity
participation, so the behaviour of the individual is placed within the wider context of household
decision making, taking account of the consequent inter-personal and institutional constraints
placed upon freedom of action.
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Elements of Activity-Based Models

In order to further explore data needs, Ken Kurani and John Polak laid out the main elements of
activity-based models. These were summarised as:

® Activity generation/participation:
- activity opportunities
- time-use

® Activity scheduling:
- timing, sequencing, duration
- planning

® Activity execution:
- network events
- re-planning

® Dynamics:
- within day
- day-to-day
- weekly
- longer term

® Cognitive:
- perceptions
- learning

® Policy sensitivity:
- information systems
- pricing/tolling
- regulation
- non-transport measures
- non-motorized transportation
- land-use effects and impacts
- in-home/out-of-home opportunities
- derived analyses (environment, QOL...)
- etc.

Specific Types of Activity-Oriented Data Collection Method

A number of different types of activity-oriented data collection method, relating both to demand and
supply data were identified and discussed.
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Demand Data

® Activity diary surveys: These are the activity-based counterpart of traditional travel diaries and
are relevant to a similar range of modelling issues, principally the description of baseline
population behaviour and the development of cross sectional models. They involve respondents
reporting activities and travel rather than just travel and may also involve the collection of a
limited amount of information regarding activities performed in the home. Experience suggests
that activity diaries can be more effective at recovering mobility information than conventional
trip diaries, especially information on short journeys and journeys made by non-motorised modes
(which are often overlooked in trip diaries). A number of examples of activity/travel diary
instruments have been used in the US in recent years and the benefits of the approach are
beginning to be more widely (but by no means universally) accepted.

® Panel surveys: These are methods in which the same individuals are surveyed at two or more
points in time, possibly, but not necessarily, by means of an activity diary. Panel surveys are
principally of value in the assessment of impacts of new policies (before and after studies) and
for the development of disaggregate dynamic models of travel demand (such as microsimulation
models). The organisation and administration of a panel survey can be complex, but the data can
be uniquely valuable, especially if the furnover of individuals who participate in different types
of activity and travel has policy implications. A small number of panel surveys are currently in
progress in the US, and there is more extensive experience of this method in some European
countries.

® Event-based surveys: A variant of the panel survey and one that is especially suited to the
investigation of long term demand issues is the event-based survey. In this approach respondents
are tracked over a longer period of time, but rather than being surveyed at regular intervals (as
is normally the case with panel surveys), then are only required to report key changes in
circumstances as and when they occur (such as the acquisition or disposal of a car or a relocation
of residence). Although experience with this type of survey is very limited, it was regarded as
being potentially of considerable interest, especially in relation to modelling the relationship
between demographic/land use change and mobility.

® Stated Response surveys: Most of these surveys, labelled "Stated Preference”, involve presenting
respondents with two or more hypothetical activity/travel situations and inviting the respondent
to indicate which situation they would prefer or which they would choose. Some surveys on
small samples involve more elaborate choice simulation exercises which are used to collect
information on choice processes and the origins of choice-sets. The advantage of these
approaches is that the researcher has control over the form of the hypothetical situations that are
presented and therefore can explore new policy measures or complex behavioural processes that
it would not be possible to address directly in the real world. Both these applications were
regarded as being of considerable relevance to the development of activity-based models. The
disadvantage of this approach is a concern over the validity of the results obtained and their
transferability from a hypothetical context to the real world. Stated Response data is increasingly
used by practitioners in the US, but some participants expressed concern about validity,
transferability or even whether agencies who asked for such data really understood their limits.
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However it was noted that for some types of issue, Stated Response may be the only feasible
approach and that methods exist to enable the ‘blending’ of Stated Response and conventional
Revealed Preference data, which can go some way towards addressing concerns over validity.

® Passive data collection: Developments in telecommunications and mobile computing are
beginning to make it possible for certain types of behavioural travel data to be collected
passively by means of remotely linked monitoring devices attached to vehicles and conceivably
also to individuals. Accurate geocoding of trip ends and routes using Global Positioning Satellite
systems, and real-time data transmission, are among the possibilities. Active research projects
are currently underway in the US, Canada and Europe aimed at developing and testing
appropriate systems.

Supply Data

® Activity opportunities: The main issue discussed in relation to supply data was how best to
address the need that it was envisaged would arise (as a result of the development of highly
detailed and disaggregate microsimulation models of travel demand) for much more detailed
information on the spatial and temporal pattern of activity opportunities. This was seen as a
major issue that can be only partially addressed through the enhancement of current digital
databases. It was also regarded as raising difficult institutional issues concerning the relationship
between the public and private sectors.

® Network topology and performance: In the same manner that detailed microscopic demand
models were anticipated to give rise to new data requirements, so it was envisaged that the
application of highly disaggregate traffic flow simulation models to larger and larger networks
would give rise to a growing requirement for detailed and up-to-date network inventory data.
Moreover, as both roadside and in-vehicle ITS systems are developed to play a larger role in
some areas, so the scope of the inventory information required increases. Although this was not
regarded as being as significant a problem as that posed by the activity opportunity data, a
number of participants drew attention to the high costs associated with establishing and
maintaining comprehensive network inventory data, and to the vulnerability of monitoring
systems to funding cuts even where they have been established.

Progress Towards Consensus

The discussion revealed a tension between the preconceptions of practitioners and researchers.
Understandably, many practitioners wanted a clear briefing on applicable and affordable new
modelling and data collection techniques that would better equip them to deal with the increasingly
complex policy issues. Perhaps equally understandably, researchers whilst quite clear about the
benefits of activity-based approaches, preferred to emphasise the outstanding research issues and
tasks.
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Even though there was, in principle, more potential for consensus on the issue of data requirements
and collection methods, we realised early in the workshop that there was little conventional wisdom
on the strategies for selecting the optimal mix of data collection to feed the development of activity-
based models. We need to draw particular attention to this insofar as there is a tendency to focus
mostly on Revealed Preference data, notably activity-travel diary methods, to the exclusion of other
data sources.

It was unfortunately not possible to arrive at a clear plan for the short (0-2 year) or medium (2-5
year) term horizons, or to address all the dissemination and training aspects of Peter Stopher's charge
to workshops. However, we took a position on some important, concrete issues: (i) the most
important data collection "unknowns and partly knowns" which deserved urgent research,
development and innovation in order to bring activity-based data collection into practice, and (i1)
some priorities for coordinating the process of activity-based travel forecasring implementation from
the data perspective. These are briefly summarised below.

Priorities for Research and Development - the List of '"Unknowns and Partly-knowns"

These issues were considered under two headings: the content of the information required and the
techniques and methods appropriate to collecting such data.

Content

® Information on in-home activities: Current activity-travel diary methods at most provide only
a very crude specification of in-home activities. Yet for a variety of reasons (e.g. growth of
virtual environments, teleworking and other forms of flexible employment) the
substitution/complementarity between in-home and out-of-home activities is likely to become
an increasingly important issue. It is not clear how much detail it is necessary or feasible to seek
on this topic.

® Level of detail in activity-based surveys vs level of detail in activity-based models: The emerging
activity-based modelling tools are highly disaggregate and in principle make large demands in
terms both of the description of population characteristics and understanding of behavioural
response mechanisms. However, it is not necessarily the case that all dimensions of these data
are required simultaneously. For example, the ability to synthesise populations from marginal
distributions of population characteristics means that it may be possible to significantly reduce
the data requirements for model application. This is one of a number of areas in which the
workshop identified the need to establish close cooperation between model developers and data
collection specialists.

® Dealing with the long term: Long term aspects of travel behaviour are not well understood and
few existing datasets contain appropriate information. It would therefore seem desirable to focus
new effort in this area.

178



® There was arecognition of an increasing need to understand how and why people make the travel
choices they do, not simply what choices they make. That is, there is a felt need for better
“cognitive” as well as “behavioural” data. Stated Response and related methods are one of the
few ways of addressing this need. However, issues of validity and transferability must be
seriously addressed.

® At a more practical level, we need to have a better understanding how to deal with “non-
Jorecastable” explanatory variables within a forecasting context.

Techniques

® Non-response. Problems of non-response and incomplete response are already serious issues in
conventional travel surveys. The scope for these problems to increase in magnitude as we move
towards potentially more complex survey instruments is substantial. Moreover, a peculiar
advantage of data collection around activity patterns is the inclusion of all traveller segments.
In short, activity-based models face more complex non-response and response bias problems than
do trip-based models. It therefore appears urgent to better understand both how to reduce the
incidence of non-response and, given that it will nevertheless continue to occur, how best to
detect it and to deal with the consequences. More work is needed on the merits and problems of
such strategies as the use of aide-memoires in telephone surveys, re-contacting respondents,
rostering between responses from members of the same household, imputation, etc. Also, the
workshop recognised growing support for an more "open", detailed reporting of non-response
and incomplete response for different subgroups of interest. This implies that an adequate set
of descriptors of both respondents and non-respondents is recorded, and it was noted that these
may not be the same variables or classes which are required for the analysis of survey results.

® FEvent-based methods to reduce respondent burden: One aspect of attempting to reduce the
problems of non-response is reducing respondent burden, and in this connection it was consider
potentially worthwhile to investigate further the scope for “event-based” reporting strategies
within behavioural surveys, especially those addressing longer term issues.

® [ntegrated data strategies. It is clear that no single data collection method is capable to
furnishing all the required information. Rather, there is a need to integrate data from different
sources. Techniques for approaching the problem of merging data from a diverse collection of
sources are available, but are generally not well known within the transport research community.
Further work in this area would therefore seem justified.

® Talking the respondent’s language. Limited research has been undertaken into how respondents
understand (or otherwise) the concepts that are presented to them in typical travel behaviour
surveys. Elements of survey grammar are often driven by the grammar of a model. However, this
may not be the most effective means of extracting sound data. Therefore research into
respondents’ comprehension and understanding of typical survey grammars would appear
desirable. The ethics of passive data collection must also be addressed, although it was
recognised that the problems in this area may have been exaggerated, and that the work most
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needed is on the institutional aspects of responsible data management (e.g. for the production
of transparently anonymous disaggregate data files) and on the field testing of appropriate ways
of obtaining informed consent.

The role of Stated Response methods. These methods appear in principle to have a major role to
play in the development of the behavioural response models that will be embedded in
microsimulations of travel demand. There was felt to be a need to clarify the role of such
techniques and in particular, as pointed out above, to seriously address the issues of validity and
transferability.

Exploiting technology: Technologies are advancing rapidly and this opens up new opportunities
for the collection and collation of data. The potential for individual passive monitoring has
already been discussed and it would seem highly desirable to reinforce the existing research
initiatives in this area. There is also important progress that could be made in terms of the
secondary use of aggregate data sources such traffic monitoring system and automatic tolling
systems. -

Implementation Issues

The workshop idenﬁﬁed three broad strategies that it believed would be of value in advancing the
dissemination and implementation of activity-based methods.

Cooperation between research into model development and research into data collection
methodology. The need for research in these two areas to proceed jointly was regarded as being
of paramount importance.

Test Bed: The facilitate the co-development of modelling and data methods, the idea was put
forward of “integrated sites” with unusual attention paid to the collection of both demand and
supply data. Such integrated sites could act as test beds for the emerging data and modelling
developments.

Justification: Practitioners need both a rationale for shifting to from 4-Step to Activity-Based
Travel Forecasting and a straightforward explanation of the differences in forecasts likely to be
produced by the two types of model. The workshop noted that these should focus on the
anticipated superior performance of activity-based approaches in estimating the effects of
simultaneous changes in both the population and the supply characteristics. Ideally, more effort
should be made to run both types of model in parallel in a small number of test cases, thus
allowing planning agencies to weigh an increased amount of "real" evidence.

Other Issues Identified As Important

At the end of the workshop, participants also identified three areas as meriting discussion, but which
did not get covered sufficiently in the time available to become the subject of recommendations:
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® More on uses of secondary or "support” data sources: In addition to aggregate sources from
transport systems (such as traffic monitoring system and automatic tolling systems,
mentioned above), the workshop would have liked to examine the potential roles of such
external sources as electronic directories to improve geocoding, or credit-card transaction
databases.

® The secondary analysis of important existing travel data, as well as its "intelligent archiving"
(meaning that the accumulated knowledge about the performance of data is preserved in a
database system, together with the database itself).

® Planning area boundaries: How extensive an area should be covered by activity-based data
collection and the model which it feeds? Are MPO boundaries the only realistic definition of
the appropriate universe?
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SUMMARY OF WORKSHOP TWO: MODELS OF ACTIVITY
ENGAGEMENT AND TRAVEL BEHAVIOR

RAM M. PENDYALA, PH.D. ERIC I. PAS, PH.D.
University of South Florida . Duke University
INTRODUCTION

This workshop primarily focused on the availability, use, and research needs of activity-based
models of travel behavior. The workshop group consisted of academics, consultants,
practitioners from public agencies, and researchers providing a forum for the brisk and
informative exchange of diverse viewpoints and perspectives. The workshop convened over a
two-day period with specific objectives charged to the group in order to ensure that a clear set of
recommendations emerged from the discussions. The workshop started with presentations by
two discussants who offered their perspectives on activity based models of travel behavior.
Following their presentations, the group worked on developing an ambitious agenda for moving
activity-based models of travel behavior into mainstream practice.

PRESENTATIONS BY DISCUSSANTS

Chuck Purvis, with the San Francisco Bay Area MTC, served as the first discussant for the
workshop. His presentation served as an opening practitioner perspective on the topic of
activity-based modeling and his thoughts were echoed repeatedly by members of the group over
the two-day period. Chuck mentioned that models need to respond to different scales of analysis
including regional and subregional modeling efforts that MPO’s typically engage in on a day-to-
day basis. Models need to be especially responsive to network-level issues which are the
primary concern of transportation planning agencies. Rarely do the MPO’s concern themselves
with new transport policies such as congestion pricing, parking surcharges, and other
transportation control measures (TCM).

Chuck also mentioned that models should be understandable to practitioners. He indicated that,
for most MPO staff persons engaged in travel demand forecasting, techniques such as structural
equations, neural networks, and hazard functions of survival models are complicated. There is a
need for training to understand and apply these procedures. In addition, he felt that there is a
clear need for proving the performance of new modeling methods before they are accepted and
implemented in practice.

Tom Golob, with the Institute of Transportation Studies at the University of California, Irvine,
served as the second workshop discussant. Tom presented a structural equation model system
that models the two-way interactive relationships between activity engagement behavior and
travel behavior. In developing the model system, several aspects of travel and activity behavior
were addressed. Interactions between household members were taken into consideration. Tom
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noted that there may be activities that household members engage in as a group and that cars
owned by a household have to be shared by all driving members. The trade-offs involved when
considering in-home activity engagement as opposed to out-of-home activity engagement also
were addressed. Tom also addressed the degree of flexibility associated with various activities.
He classified various activities into three broad categories, namely, work and work-related,
maintenance (shopping, personal business, etc.) and discretionary (social recreation, etc.).
Mobility may be represented by trip rates by mode, travel times, and travel distances (vehicle
miles traveled). The structural equation system was estimated on data from Portland, Oregon to
relate activity and travel behavior to a set of exogenous or explanatory variables. Tom noted that
the model system can be extended to consider such aspects of behavior as trip chaining,
ridesharing (driver or passenger), and use of non-motorized modes for short trips. In addition,
Tom indicated that stated preference questions can also be incorporated into the model system
thus providing a more powerful TDM policy analysis tool.

Various issues were raised in light of Tom ] presentatlon Some of the issues raised included the
following:

® Analysis of weekend activity behavior and travel

® Use of longitudinal data to track changes in behavior over time

e Stability of relationships over time; it was noted that relationships are more likely to be
stable in the short-term as opposed to the long-term

e Day-to-day variability in activity and travel behavior

® Need for supply side models; how does travel time and distance relate to congestion
levels on network

Following the presentations by discussants, the group addressed four fundamental questions with
regard to models of activity engagement and travel behavior. They are:

1. What activity-based models or techniques are available to use now?

2. What needs to be done to bring these models into practice within the next two years?

3. What are the application areas where activity based models may be applied in the next
five years?

4. What are the barriers to implementation and what needs to be done to overcome them to
facilitate moving activity based models into mainstream practice?

QUESTION 1: MODELS IMPLEMENTED AND/OR AVAILABLE

The group discussed several model systems that have been implemented or are available, but
have not been implemented yet in a real world environment. The group felt that there are several
categories into which model systems may be classified depending on their level of complexity
and the extent to which they replace or interface with various components of the currently used
four-step UTPS process.
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With regard to models that have been implemented and tested in a real-world environment, the
workshop group identified several model systems. First, the group identified models that
constitute an extension of the current UTPS process where elements of activity based analysis are
incorporated into current modeling procedures. The effort at the San Francisco Bay Area MTC
was mentioned in this regard.

A second class of model systems involved the use of discrete choice methods to model the choice
of activities and/or trip chains that people pursue. In this context, three model systems were
identified by the group. These included the Dutch National Model, the Simulation Model
System (SIMS) applied in Stockholm, and the discrete choice models implemented in Boise,
Idaho and New Hampshire.

A third class of models was considered to offer a higher level of complexity and detail with
regard to the modeling of activity and travel patterns. This class involved the microsimulation
model systems of AMOS (activity mobility simulator) tested in the Washington D.C.
metropolitan area and MIDAS (microanalytic integrated demographic accounting system) that
was tested in The Netherlands.

The typology of models implemented may be summarized as follows:

° Extehéions of UTPS Process
¢ San Francisco Bay Area MTC

® Discrete choice models
¢ Dutch National Model
e SIMS (Stockholm)
* Boise, Idaho
» New Hampshire

® Microsimulation models
« AMOS
« MIDAS

In addition, the workshop group identified a few other model systems that have been developed,
but have not yet been implemented in practice. One of the model systems is the Activity Tour
Model developed at MIT and being implemented in Portland, Oregon over the next one to two
years. Another model is TAMOS (transactions activity mobility simulator) that is being
developed for the California Energy Commission. Also mentioned were STEPS, a model system
developed in Berkeley, California, and a series of models that have been developed in Europe,
but have not yet been implemented in practice. These mainly include activity scheduling models
such as CARLA, SCHEDULER, SMASH, and DynaMIT. The workshop group made a note that
very little is known among practitioners about international efforts and that there is a greater
need for the dissemination of model development news.
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Several issues were raised regarding the availability and implementation of model systems that
have been developed over the last several years. These include:

® The definition of a tour or trip chain for activity based modeling of travel behavior. Several
different definitions have been used across model systems and the need for a consistent
definition was felt.

® There may be two avenues that are necessary for the implementation of activity based
models; one avenue involving the upgrading of existing elements of UTPS and another
involving an overall upgrade to a new model system.

® The diversity of methods is mind-boggling for the practitioner. There is a need for a greater
amount of consistency of procedures.

® The question was raised as to whether models that have been successful in one location can
be applied in another location? Do activity based models have the same difficulties in
transferability that trip based models have?

QUESTION 2: STEPS FOR IMMEDIATE IMPLEMENTATION

The next question addressed by the workshop group was concerned with the steps that need to be
taken to move the existing models (identified in Question 1) into practice within a very short
time frame. A very lively discussion raised and addressed several issues concerned with
immediate implementation of activity based model systems.

The group felt strongly that the applicability of activity-based models needs to be demonstrated
in practice in an environment that is either their own or very similar to their own. The workshop
strongly recommended that demonstration projects be conducted in several areas across the
country. The areas should be of a diverse nature with considerable variation with respect to the
following characteristics:

Size (large, medium, and small)
Population density

Intensity of development

Strength of CBD

Urban vs. rural characteristics
Availability of activity vs. trip-based data

In addition, the demonstration projects should involve the testing of multiple methods to
facilitate a comparison of various methods and a determination of the methods most suitable for
different planning environments. The group indicated that implementation will occur only after a
proof of concept has taken place in the real-world.
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Another major thrust area identified by the group was the formation of partnerships. It was felt
that academics, researchers, MPO’s, and consultants need to work together to make activity
based modeling a reality. MPQO’s would like to understand the tool and its capabilities thoroughly
before they actually use the model systems for their planning studies. It was felt that
partnerships among the various developmental and user groups would greatly accelerate the
movement of these methods into practice.

MPO’s and practitioners indicated that they were not aware of how close and suitable the various
models were to actual application in practice. They indicated that MPO’s need models that can
applied immediately as they do not have the time and resources to develop new model systems or
customize generic model systems to their environment. Also, the group noted that MPO’s need
to make a slow transition from their current modeling procedures to the new modeling
procedures. In fact, for some time period, it is anticipated that parallel procedures will be in
place until an MPO is willing to completely adopt a new modeling method. Also, MPO’s are of
a very diverse nature. While some MPO’s may have the technical abilities and staff resources,
they may not have the data needed for implementing the models. At other MPO’s, the reverse
may be true. As such, there is a need to customize activity based modeling procedures to the
specific situation in which they will be applied. :

Education, training, and information dissemination through workshops, reports, short courses,
and seminars were identified as key ingredients to the process of moving activity based methods
to practice. It was felt that TMIP should take a lead in these efforts to keep practitioners fully
informed of activity based model developments. In addition, it was felt that the technical and
policy staff at planning agencies would have to be trained and educated about the new modeling
methods before they can be applied in practice. Universities and industry should take a lead in
offering short-courses, on-site training, and do-it-yourself user manuals for the application of
activity based models.

Several other issues were raised in regard to the immediate application of activity based models
in practice. With regard to the question of why MPO’s have been slow in adopting new
procedures, it was felt that time and resources (staff and funds) were too scarce to allow radical
changes. Federal support is needed to facilitate the transition to new methods. It was felt that
other planning agencies such as land use planning boards, city and county transportation
divisions, and other agencies that are affected by transportation planning decisions should also be
involved in any transition to new modeling methods. It must be ensured that activity based
models are responsive to local, state, and federal legislative requirements as they govern and
dictate many provisions of the planning process.

Some concern was raised with regard to a comparison of existing modeling procedures with
activity based models. If the modeling processes offer different results, then how does one know
which is correct? The group felt that activity based models should be able to replicate base year
conditions and be responsive to new transport policies without having to apply various
adjustment factors that are often applied in UTPS models. Also, it was felt that the results
obtained from activity based models would, in many instances, complement and not compete
with those provided by traditional UTPS models. "
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QUESTION 3: APPLICATION AREAS FOR FIVE YEAR IMPLEMENTATION

The workshop group discussed the various types of application areas for which activity-based
models may be applied in a few years. The group discussed several issues in light of the
different planning needs of transportation agencies. One issue dealt with the potential difficulty
of relating activity-based information to network flows that most transportation planning studies
typically need. The potential for activity based modeling to address land use impacts of
transportation decisions in a more robust framework was identified as a key advantage of activity
based analysis. The need to model trip making on a point-to-point basis rather than a zone-to-
zone basis was mentioned as another area where activity based models may offer unique
capabilities. GIS databases and procedures may offer powerful tools in this regard. The group
felt that destination choice is a key challenge facing travel behavior modelers at the present time.
In order to demonstrate that activity based models can be used for planning studies, one member
indicated that activity based models should be applied in an urban context where only traditional
zonal trip data are available as only a very few urban areas around the country are collecting
detailed activity data. -

The group identified three classes of application areas in which activity based models may be
applied over the next few years. These are briefly discussed below:

Traditional Planning Studies

The group indicated that MPO’s typically spend most of their time doing traditional planning
studies and that activity based models would have to lend themselves to these types of
applications to be accepted in practice. Examples of these studies included:

Long Range Transportation Plans
TIP Conformity Analysis

Land Use Impact Analysis

Project Development and Evaluation

Policy Questions

A second application area identified by the group pertained to the analysis of new transport
policies. The group felt that this is the area where activity based models hold the greatest
promise as traditional UTPS type modeling procedures were not developed to handle policy
questions related to the implementation of travel demand management strategies, transportation
control measures, and new technologies. Examples of policy questions identified by the group
included:

® Congestion pricing
® Employer trip reduction programs
® Intelligent Transportation Systems
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HOV and Car/Vanpool programs
Fare structure changes and tolls
Other TDM strategies and TCM’s
Alternative fuels

Non-Traditional and Other Studies

Finally, the group identified a third class of planning studies which is intended to serve as the
“catch-all” category for those that don’t fall into the previous two categories. Within this
category, the group identified special planning studies that deal with the study of unique
population segments or rare behavior. Examples of special studies that could be included in this
“class were identified as:

Analysis of special population segments (elderly, handicapped, etc.)
Equity studies of transportation investments

Analysis of Non-motorized mode use

Telecommunications impacts on travel

The group also noted that the movement of freight and the explicit recognition of intermodalism
have been lacking in activity-based analysis and urged the research community to consider these
aspects of the transportation system in future developmental work.

QUESTION 4: OVERCOMING BARRIERS TO IMPLEMENTATION IN PRACTICE

The final question addressed by the group was concerned with identifying the barriers to
implementing activity-based models in practice and the steps that need to be taken to overcome
the barriers. Some of the discussion related to this question overlapped with the discussion
surrounding Question 2 where steps needed for immediate implementation were identified.

The biggest barrier to implementation in practice was identified as the lack of proof that activity
based models would work in several urban contexts. The group emphasized that planning
agencies around the country would not adopt activity based models in mainstream practice until
they are convinced of the credibility of such models and are confident of the results they provide.
In order to establish credibility and confidence, the group identified two preliminary criteria that
may be of use to researchers and developers:

® Activity based models should be able to replicate base year conditions without having to
apply various adjustment factors that are typically used in UTPS modeling procedures

® Activity based models should be sensitive to new transport policies (such as TDM
strategies and TCM’s) that current UTPS models are not equipped to address and should
provide intuitively meaningful results
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In this regard, the group once again strongly emphasized the need for a multi-location
demonstration study where multiple activity based methods would be applied in different types
of urban contexts to prove the abilities of activity based models in meeting planning needs.

Another major barrier to implementation was related to data requirements for activity based
modeling and the monetary resources needed to collect such data. The group felt that it would be
prudent to study the transferability of activity based data. In this regard, it was mentioned that
the variability in activity engagement rates is much smaller than that for trip rates, perhaps
making activity data more transferable than traditional trip data. Within this context, the group
noted that funds should be made available to local planning agencies to consider implementation
of activity based models. As implementation of new model systems is resource intensive and
local planning agencies are already operating under tight fiscal constraints, it was strongly felt
that MPO’s would be very slow to consider new modeling procedures without monetary
assistance from the federal agencies.

Staff expertise and training needs were identified as another major requirement for moving these
methods into mainstream practice. The group mentioned that various technology transfer and
training materials should be made available for planning agency staff to become knowledgeable
in the area of activity based analysis. Primers or readers on activity based models, short-courses,
conferences and workshops, demonstration studies with researcher/practitioner partnerships, and
on-site software training were identified as the main ingredients to effective technology transfer.

In this context, the group also talked about short-term research needs to address some of the
issues in activity based analysis for which adequate insights have not been obtained. The
research needs identified include:

® The impacts of land use patterns and destination opportunities on activity patterns need to
be -determined and the underlying relationships should be unraveled using real-world
activity data that is merged with land use data

® The level of detail needed from models for various types of planning applications should
be determined in order to identify the types of modeling methods most appropriate for
different applications

® Detailed descriptions of activity patterns and how they relate to travel patterns are needed
to establish the link between activity information and travel on networks

e Transferability of activity data should be studied in light of the fact that only a very few
urban areas have collected detailed activity data

® A synthesis of time use surveys should be undertaken to summarize the lessons leamnt and
knowledge gained from such surveys

Finally, the group indicated that while these short-term research needs will provide benefits for
moving activity based models into practice, it should be recognized that activity based models
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are the culmination of decades of research into travel behavior and its underlying forces. As
such, the value of long-term research should be recognized and long-term research and
development efforts should be continued to further enhance model specifications and estimation
methods.

In summary, the steps that would help move activity based methods into mainstream practice are
as follows: ‘

Multi-location multi-method demonstration projects to prove concept in practice
Researcher/practitioner partnerships

Education and training

Reader/Primer on activity based methods

Conferences, workshops, and short-courses around the country

Monetary resources and incentives

Sample activity data sets with computer model demos

Continued support for long-term research and development

The workshop group concluded its discussions at the end of the second day having accomplished
its mission.
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SUMMARY OF WORKSHOP THREE:
MICROSIMULATION IN ACTIVITY ANALYSIS

BOB SICKO HANI MAHMASSANI
Puget Sound Regional Council University of Texas at Austin

The Activity Based Travel Forecasting Conference was designed to allow practitioners,
researchers and the academic community to discuss and formulate a general consensus on the
following three objectives.

1. What applications are ready for use, what are they and what is needed to make them
functional in the planning community.

2. Define the application areas not readily available, research require to develop functional
models, and determine how to move them into practice

3. How to disseminate the application areas, encourage use of new methods, provide adequate
training and continue research.

Micro-simulation:

The micro-simulation workgroup participants represented a diverse mix of public and private
practitioners and the academic/research community. As the workgroup session began to unfold,
it was obvious that many of the practitioners in the group had very limited experience in using
microsimulation techniques or tools in their daily planning activities. Generally, most were
aware of some type of network micro-simulation application, but few had experience using more
complex land use and transportation demand simulation models. The academic and research
participants presented to the group a review of the current research activities and potentially
viable techniques available for implementation.

As discussion continued, it was further evident that many did not adequately understand the
types of inputs required for micro-simulation models nor the type of analytical techniques
required in interpreting the output of the models. In fact, during a somewhat intense exchange
of confusion, it was pointed out, that as with any modeling (sequential or micro-simulation), one
must still think about and analyze the output.

It was concluded from the discussion that traditional analytical tools would not be enough or
even adequate to analyze the new databases created within the micro-simulation modeling
process and new techniques would have to be taught to practitioners. Also emerging from the
discussion was the awareness that as new researchers and practitioners enter into the field of
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transportation and land use planning, they may in fact be required to learn two sets of tools to use
in real world applications.

Workshop Summary

Based on the objectives of the Conference and the discussions within the workgroup, it was
agreed that the summary of the work group sessions focus on the following four areas:

1. Applications: What tools are currently available for microsimulation?
2. Obstacles: What stands in the way of implementing the tools?

3. Mechanisms: How can the planning community 1ncorporate the new techniques into their
current planning paradigms?

4. Research: What are the application issues and policy implications, what type of models and
processes are needed, and what would the methodological framework of the new models be?

Current Applications

Discussions focused on what applications have been used or are currently being tested in real
world cases.

e A few of the larger Metropolitan Planning Organizations have used the "STEP" software to
carry out household-level "micro-simulation” of travel, in Boise, Idaho, a Tour Base Model
has been developed, and there has been some work using the disaggregation of traditional
production and attractions matrices.

® The Los Alamos effort and others have demonstrated the feasibility of the micro-simulation
of population. Employment location/simulation modeling has not been addressed
adequately.

® Researchers and private practitioners have used many of the network simulation models,
those mention included Dynasmart, and Integration. Neither simulation package has multi-
modal capabilities.

® The dynamic micro-simulator Activity-Mobility Simulator (AMOS) is being tested as a
prototype for analyzing Travel Demand Management (TDM) policies in the Washington
D.C. area.

® Also discussed was the new data technology changes and how they fit into the scheme of
collecting data. The electronic directory of land use activity (firm location) and its potential
tie-in with spatial data software (GIS) were mentioned.
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Obstacles

The workgroup next focused on what were the key obstacles in preventing a smooth transition to
using micro-simulation tools in the planning practice.

Change. Institutional fear and/or the lack of in-house technical expertise were considered the
primary obstacles in incorporating new techniques in the current planning paradigm.

Level of training and (re-) education needed for new technologies and methodologies
initially are staggering. With no clear direction established, it is very difficult to invest
monies and staff time at the current time.

Distinguishing how the new techniques fit with current modeling methodology and how does
one compare them was a key point brought up by the workgroup. Concern was raised on
how does one directly compare outputs from uniquely different approaches. Will it be an
apples to apples comparison or will we need to be addressing similar questions with different
approaches.

Developing as a theme for the Conference was a "Show Me that it really works mentality".
Though a lot of theoretical and some hands on methods were described, no tangible tools or
methodologies could be agreed upon. Very few practitioners envisioned changing their
current planning processes in the near future.

MECHANISMS

The workgroup next examined the potential mechanisms that would be required to begin the
process of incorporating activity-based micro-simulation in today’s planning environment.
Though not inclusive the following were the top five suggestions developed by the workgroup.

First and foremost it is essential that we need to take an incremental approach in
implementing the potential new planning tools. This incremental approach should
incorporate both the transition to new analytical tools and the training required to use them.

Good documentation of new techniques, showing when and where they are applicable in the
planning process is imperative. One needs to understand the benefits and the short-comings
of using the new tools over current tools and practices. Developing interactive tutorials or
class room courses were a few of the examples discussed by the group.

If practitioners are to change the tools and processes used to meet Federal (and State)
requirements, acknowledgment of the difficuities inherent in the transitioning process must
be developed. A Federal or State decree on the issue must be established as well as a
concerted effort to provide guidance to the many players in the planning and research
professions.
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® The regulatory environment must be supportive of the changes required in transitioning to
new methodologies. In particular, concern over interpretation of air quality findings
between two different modeling methodologies and the implication on conformity, Federal
and State environmental regulations, and potentially, traffic mitigation issues.

® [t was also suggested that the technical community ride the wave of emerging technologies
to obtain key data required for new modeling paradigms and validation of outputs. This
includes the myriad of Intelligent Transportation System (ITS) components (e.g., Automated
Traffic Information System (ATIS), Automatic Vehicle Identifier and Location (AVI/AVL),
etc.).

RESEARCH NEEDS

The last area of discussion by the workgroup was research required to assist in the
implementation of micro-simulation into the planning arena. Many ideas were presented and
they have been categorized into three parts, application and policy issues, models and process,
and methodological framework. To adequately address the research needs and optimize the
potential for implementation, equitable resources should be focused on all of the areas.
Application and Policy Issues

Many application and policy issues were discussed and narrowed to the following:

1. What level of representation is required to obtain reasonable and defendable results?

2. Understanding of the uncertainty inherent within the process. How can the analyst “bracket”
the uncertainty.

3. Determining the role and type of modeling approach for specific policy questions will need
to be addressed.

4. Establishing an evaluation framework for potentially many different modeling approaches
should be done before many of the new tools are implemented.

Models and Process

Expressed by the group was a need have a broader based approach on model development. It was

felt that current emphasis still seemed to be primarily focused on traffic simulation. Other topics

for further research included;

e Modeling demand sensitivity to changes. The changes can be in the form of new information .
technologies or an actual physical change in the transportation supply.
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® Research on the modeling of multi-modal interactions, including non-motorized and freight
and goods travel, on both the supply and demand side should be furthered.

® Urban activity micro-simulation should be enhanced. In particular the gap between the ability
to simulate population and the seemingly lack of attention to employment must be narrowed.

® Continue model development in the area of activity schedules/plan generation. Examples
include tour based modeling and trip chaining.
Methodological Framework

Discussions on the framework(s) in which the new applications are to be used generated a lot of
debate. The following summarizes the groups priorities for further research and direction.

® How will the new techniques handle different time and spatial scales?
e How will decision hierarchies be incorporated into the new methodologies?

® How will the output developed from the models be used and what are the representation and
modeling implications?

® How does one interpret the propagation of variance, error, etc.. Within the new modeling
methodologies.

® What are the minimum entity representations required within the new framework?
® What techniques need to be developed to accurately assess the models performance?
® How do we address the output/storage challenges inherent in such a data intensive system?

® How can the new models be designed to insure that there would be maximum computational
performance?
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David Kurth

Rich Kuzmyak
Keith Lawton
Martin Lee-Gosselin
Ruth Lev-Ran Kleiner
Hani Mahmassani
Bob McCullough
Helen Metcalf
Bob Miller

Eric Miller

David Moffett
Andy Mullins
Elaine Murakami
Gary Nelson

Bob Noland

Felix Nwoko
Marin Outwater
Eric Pas

David Pearson
Ram Pendyala
John Polak
Chuck Purvis
Tricia Quigley
Rishi Rao

Bud Reiff
Michael Replogle
Tom Rossi

Scott Rutherford

University of New Brunswick
Gallop Corporation

Orlando Urban Area MPO
Triangle Transit Authority
University of Waterloo
Houston MTA

University of Connecticut

S. Karni Engineers Ltd.

New Jersey Transit

Metro

Southwest Washington Regional Transportation Council
University of California-Davis

" North Carolina Department of Transportation

ITS, University of California, Davis
Barton-Aschman Associates, Inc.
Cambridge Systematics, Inc.

Metro, Portland

University of Laval

MAAZ Public Works Department
University of Texas at Austin

Florida Department of Transportation

Plan Trans

New Jersey Department of Transportation
University of Toronto

Bernarden, Lochmueller & Associates, Inc.
Houston-Galveston Area Council

Federal Highway Administration

Mitretek Systems

U.S. Environmental Protection Agency
City of Durham Department of Transportation
KIS Associates

Duke University

Texas Transportation Institute

University of South Florida

Imperial College

Metro Transportation Commission
Imperial Calcasieu Regional Planning & Dev. Comm.
Rao Associates, Inc.

Lane Council of Governments
Environmental Defense Fund

Cambridge Systematics

University of Washington

200



Nabil Safwat
David Schellinger
Yoram Shiftan
Gordon Shunk
Bob Sicko
LaRon Smith
Frank Southworth
Peter Stopher
Xiaoduan Sun
Don Vary
Kenneth Vaughn
Ed Weiner
Chieh-Hua Wen
Jim Wilkinson
Jim Williams
Chester Wilmot
Brad Winkler
Kyle Winslow
Ping Yu
Julia Zhou

LIST OF ATTENDEES

Texas A&M University

URS Consultants, Inc.

Cambridge Systematics

Texas Transportation Institute

Puget Sound Regional Council

Los Alamos National Laboratory

Oak Ridge National Laboratory
Louisiana State University

University of SW Louisiana
Cambridge Systematics, Inc.

National Institute of Statistical Science
U.S. Department of Transportation
Northwestern University

Gulf Regional Planning Commission
RDC, Inc.

Louisiana State University

Michigan Department of Transportation
Parsons Brinckerhoff

Bucher, Willis & Ratliff Corp.

North Jersey Transportation Planning Authority, Inc.
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